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ABSTRACT 

We study actions of a Hopf algebra H on an algebra R such that the action 
is twisted by an invertible map ~,: H ® H ~ R; the biinvertible condition 
means that these actions also have both an inverse and an antiinverse in 
Horn(H, EndR). When R is an ordinary H-module algebra, the action is 
biinvertible if the antipose is bijective. As a new example we show that 
if the H-action is twisted and the coradical of H is cocommutative, then 
the action is biinvertible. After studying the continuity of these actions 
with respect to the filter of ideals of R with zero annihilator, we consider 
when the actions may be extended to the symmetric Martindale quotient 
ring of R and its H-analog. Our results can be applied to crossed products 
R#oH. 

I n t r o d u c t i o n  

Usually in s tudying  an act ion of  a Hopf  algebra H on an algebra R it is assumed 

tha t  R is an  H-module .  In  const ruct ing a crossed p roduc t  R # q H  of H over R, 

however, this is not  necessarily true, since the action is twisted by  the cocycle 

a;  this a lready happens  in the case of crossed products  of  groups act ing on non- 

commuta t ive  rings. In fact when H is cocommuta t ive  and R # ¢ H  is a crossed 

product ,  it is shown in [BCM] tha t  R is an H-modu le  if and only if o has values 

in the center of  R. 

In this paper  we consider these more  general actions which are twisted by a map  

o: H ® H -~ R which is convolution-invertible, a l though we do not  require tha t  a 
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is a cocycle; in the terminology of [Sc], R is a twisted H-module algebra. We show 

that many desirable properties of H-module algebras can be recovered provided 

the H-action on R is invertible and anti-invertible, considered as an element of the 

convolution algebra Horn(H, End R). We call such actions biinvertible; examples 

include the usual H-module algebras for any H whose antipode is bijective, and 

also any twisted action by a Hopf algebra whose coradical is cocommutative. Such 

Hopf algebras include group algebras, enveloping algebras of Lie algebras, and 

the regular functions on a unipotent algebraic group. A newer example is given 

by Uq(g), the quantum enveloping algebra of a complex semi-simple Lie algebra 

g; in fact these Hopf algebras are pointed, with coradical the group algebra of 

the obvious group-like elements. This is shown in [M2]; see also JR, Lemma 1]. 

Our main results concern when twisted actions may be extended to the sym- 

metric Martindale quotient ring of R and its H-analog. The importance of this 

property is that it enables one to define X-inner actions, that is actions which be- 

come inner on the quotient. For groups such actions, introduced by Kharchenko, 

proved very useful in sudying fixed rings and crosssed products, since frequently 

one could reduce to the X-inner and X-outer cases (see [M], [P]). Such X-inner 

actions for Hopf algebras were studied in [C] for H-module algebras and in [Ch] 

for crossed products with anti-invertible actions. Other recent work on X-inner 

H-actions appears in [Sc]. 

This paper is organized as follows. In Section 1 we formally define a twisted 

action ~, its inverse 8 and anti-inverse ¢, as well as crossed product actions and 

the continuity of these maps with respect to various filters of ideals of R. We 

then prove some basic properties of these maps, in particular that 8 and ¢ are 

themselves "twisted" actions in a certain sense. 

Section 2 is concerned with examples of biinvertible actions, and we prove the 

result mentioned above: if H has cocommutative coradical H0, then any twisted 

action of H is biinvertible. Moreover if H is pointed (that is H0 is a group 

algebra), then the maps ~, 8 and ¢ are all continuous with respect to the filter 

j r  of all ideals of R with zero annihilator. 

In Section 3 we show that biinvertible twisted actions can be extended uniquely 

to the symmetric Martindale quotient ring Q of R, provided 8 and ¢ are ~'- 

continuous (respectively, extended to the H-quotient ring QH of R relative to the 

filter ~H = ~" N {H-stable ideals}, provided 8 and ¢ are ~H-continuous). This 

extends results of [C] and [Ch]; both considered only QH, Cohen for H-module 
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algebras and Chin for "fully antiinvertible" crossed product actions. By the 

results of Section 2, these results apply to all pointed Hopf algebras; moreover, 

the extension of the action ~0 to Q or QH is also biinvertible in that  case. In 

general, however, we do not know if the extension of ~0 is biinvertible, since 

extending 0 and ¢ is more difficult. 

In the last section we specialize to crossed products and give a criterion for 

invertibility of the action in terms of maps from H to R#~H; this parallels Chin's 

criterion for antiinvertibility. We do not know if these criteria are necessary for 

biinvertibility. Finally when the crossed product action extends to QH, we may 

construct a larger crossed product QH(R)#aH; we show that this new algebra 

embeds naturally into Q(R#t,H). This result is used in [BeM], where it is proved 

that if H is irreducible and every non-zero H-stable ideal of R contains a regular 

element, then Q(R#~H) = QH(R)#~H. 
Throughout H denotes a Hopf algebra over the field k, and R a k-algebra. 

We will follow the notation in Sweedler's book [S]; thus H has comultiplication 

A: H -~ H ® H, counit e: H --* K,  and antipode S: H ~ H. The unit element 

in H may be written as a map t/: k --* H. We usually abbreviate the summation 

notation £xh = ~ h  h(x) ® h(2) by the notation Ah = Y]h hi ® h2. Also recall that 

An+l: H ~ H ®"+2 is defined inductively by A 1 = A and A,+I  = ( A ® I n )  o An. 

1. D e f i n i t i o n s  a n d  p r e l i m i n a r i e s  

The notion of biinvertibility makes sense for coalgebras, and not just for Hopf 

algebras. Thus let C be a k-coalgebra and R a k-algebra. Recall that  C mea-  

sures  R if there exists a k-llnear map ~: C --* Endk(R), written ~,ca = c. a, all 

c E C, a E R, such that c.(ab) = ~c  (Cl .a)(c2 .b) and c.1 = ¢(c)1, c E C, a, b E R. 

We wish to consider ~o as an dement of the convolution algebra Homk(C, End R). 

1.1 Detlnition: Let ~ be a measuring of R by C. 

(1) ~ is inver t ib le  if it has an inverse 0 E Horn(C, End R). That is, 

c c 

(2) ~ is an t i - inver t ib le  if it has an anti-inverse ¢ E Horn(C, End R). That  

is, 

o =  (c)iaR = o ¢ o , ,  allc  c .  
c c 
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(3) ~ is b i lnver t ib le  if it is both invertible and anti-invertible. 

We now assume C = H is a Hopf algebra. The next definition weakens the 

notion of H-module algebras. 

1.2 Definition: Let ~0 be a measuring of R by H. 

(1) ~ is called a t w i s t e d  ac t ion  if 

(i) 1. a = a, all a e R, and 

(ii) there exists an invertible map a E Hom~(H ® H, R) such that 

(1.3) h.(k .a) = ~ , ,  (~,, k~)(h~k2 .a),,  -~ (h3, k~) 
h,k 

aU h, k E H, a E R. 

(2) ~ is called a c rossed  p r o d u c t  ac t ion  if it is a twisted action and in 

addition 

(iii) a(h, 1) = a(1, h) = ~(h)l, all h e H, 

(iv) a satisfies the cocycle condition 

(1.4) ~_, [hi .a(kl,ml)la(h2,k2m2)= ~_~ a(hl,kl)a(h2k2,m) 
h,k,m h,k 

all h , k ,m  E H. 

(1.3) is called the twisted module condition (TMC), and i f~  is a twisted 

action of H on R we also say that R is a t w i s t e d  H - m o d u l e  a lgebra ,  as in 

[Se]. A crossed product action is precisely what is required to form the crossed 

product algebra R # a H  [DT, BCM]; as a vector space, this algebra is isomorphic 

to R ® H,  and it has multiplication given by 

(1.5) (a#h) (b#k) = ~ a (hi. b) ~ (h2, kl) #h3k2, 
h,k 

all h, k E H, a, b E R, with identity dement 1#1. 

Now let Y- denote the filter of all (two-sided) ideals o f / / w i t h  zero left and 

right annihilator, and let Y-H = {I  E Y-I H -  I C I}, the subfilter of H-stable 

ideals in Y-. 

1.6 Definition: Let r E Hom(H, End R). Then I" is Y ' -cont inuous  (respec- 

tively Y'n -con t inuous)  if given any I E 5 r (resp. I E Y'H) and h E H, there 

exists J E Y- (resp. J E Y-H) such that FhJ  ___ I. 
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Note that I" being 3r-continuous is equivalent to saying that given I, the 

inverse image of I~h on I contains some J E 3r; this is just the usual definition of 

continuity in a topological group, where R is a group under addition and 3r is a 

basis of neighborhoods of 0 in R. Of course these remarks apply to 3rn, as does 

the next lemma. 

1.7 LEMMA: 

(1) If F is 3r-continuous, ~hen given I E 3r and h i , . . .  , h ,  E H, there exists 

J E 3r such that F~, J C_/, for i = 1,. . .  , n. 

(2) The 3r-continuous maps in Homk(C, End R) form a subalgebra. 

Proof." (1) is clear since 3r is closed under finite intersections. (2) The sum of 

continuous maps is continuous, as in (1). For the (convolution) product, choose 

f,  g E Horn(H, End R) which axe 3r-continuous, I E 3r, and h E H. Write 

, ' ,h= H®H. 
i 

Then 

( / , g ) , ( , ' )  = ogh,(r),  r e R. 
i 

By (1) we may find J E Y" such that fh, J C_ I, all hi and then find K E ~" such 

that ghIK C_ J, all h~. Thus for a E K, 

( f  *g)h(a)= Efh,(gh~a) C_ E f , , J  C L | 
i i 

We also consider a property stronger than 3rn-continuity. 

1.8 Definition: A map F E Hom(H, End R) is fully H-stabil lzing if FhI C I 

for all H-stable ideals I of R and all h E H. An action ~0 of H on R is fully 

bi invert ible  if it is biinvertible and both 0 and ~ are fully H-stabilizing. 

The terminology follows Chin [Ch], who studied crossed product actions 

which were fully anti-invertible (although he called them fully "invertible", only 

was considered). 

1.9 Example: Let R be an H-module algebra and assume the antipode S of 

H is bijective. Then the action islways fully biiuivertible: let 0ha = Sh. a and 
~ha = S - l h  • a. Thus biinvertibility is a natural generalization of the property 

of R being an H-module. 
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1.10 Example: Let H = kG, the group algebra of the group G. A measuring of 

R by H corresponds to a map ~ 6 Homk(H, EndR)  such that ~0(G) C_ Atg(R), 
the algebra maps of R to itself. Write qo(g) = g, for g 6 G. If the measuring 

is twisted action, then ~(G) c_ Aut(R) (see 2.2) and by (1.3) 9h - g---h (rood 

Inn R), where Inn R denotes the inner automorphisms of R. Conversely, any 

group homomorphism f:  G ~ Aut R~ Inn R gives rise to a twisted action of 

kG on R as follows: let 9 6 Aut R be a coset representative for f(g); then 

9h = n(g, h)g---h where n(g, h) 6 Inn R. Let a(g, h) 6 R be a unit inducing n(g, h). 

Then ~(g) = 9 is a twisted action of G on R. Note that this construction enables 

us to give examples of twisted actions which are not crossed product actions. 

We remark that any twisted kG-action is }'-continuous. For, given I 6 }" 

and x 6 G, let J = z-* • I. Using (1.3), 

X'(X -I "f) = O'(X,X -I) (ZX -l'f)O'-l(x,~g -I) (~ f. 

For h = Eazx 6 kG, use J = ~ z-* • I as in 1.7 (1). 

We record some elementary properties of the maps 8 and ¢. 

i.ii 

asin 

(i) 
(2) 

(3) 
(4) 
(5) 
(6) 

LEMMA: Let %0 be a measuring of R by the coa/gebra C and let O and %b be 

Definition 1.1. Then for a11 a,b 6 R,h  6 C, 

O anti-measures R; that is 8h(ab) = ~'~h(Oh~a) (Oh1 b), 

¢ anti-measures R, 

(h. a)b = Eh hi.  [a(Oh2b)], 
b(h. a) = ~"]~h h2 " [(¢hl b)a], 

b(Oh ) = E [(h2. 

(¢ha)b = E Ch2[a( hi"  b)]. 

Proof: 

(1) 8h(ab)----Eh Oh,[(~h28h, a)b]----ESht[(¢ph28hsa) (~h, Sh.a)] 

= E Oh, b)] = a)(Oh, b). 
(2) is [C, 1.2]. Parts (3) and (4) are immediate from the definitions, and 

(5) and (6) follow from (1) and (2) respectively. | 

1.12 COROLLARY: Let ~o be a biinvertible measur/ng of R by H, and let I be an 

idea/of R. 

(1) /_f~o is a twisted action, then II • [ is an H-stable ideal of R containing I. 
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(2) / f  qo is fully biinvertible and I is H-stable, then the right and left annihi- 

lators of I are also H-stable. Thus if  R is H-prime, :TZH is the set of all 

nonzero H-stable ideMs. 

Proof: (1) That H .  I is a right ideal follows from 1.11 (3) and that  it is a left 

ideal follows from 1.11 (4). Thus H .  I is an ideal; it contains I since 1 • a = a, 

all a E R. To see it is H-stable, we use (1.3): for h, k E H and a E I,  

h .  (k.  a) --- E a(hl ,  kl)(h2k2, a)a-l(h3, k3) E R ( H .  I ) n  c_ H .  I. 

(2) That  the right annihilator is H-stable is shown in [Ch, 2.2], using ¢. A 

similar argument works on the left using 0: let B be the left annihilator of I.  

Then for a e I ,b 6 B ,h  e H, 1.11 (3) gives (h.b)a = ~-,h h, .[b(Oh, a)] 6 H .bI = 

H .  0 = 0. Here we have used that OHI C_ I, since ~ is fully biinvertible. Finally, 

since R being H-prime means that the product of non-zero H-stable ideals is 

non-zero, the fact about .~"g is clear. | 

The following useful identities can be considered as versions of the twisted 

module condition (1.3) for the maps 0 and ¢. 

1.13 PROPOSITION: Let ~ be a twisted action of H on R. Then for all h, k E H, 

a, b E R, 
(1) E (Oh, ks a) Ok, oh, i (h2, k2) = E 0k, 0h, (a (h2, k2) a), 

h,k h,k 

(2) E (¢knCh. i-1 (h2, k2))(¢h,k,b) = E Ct,¢h,  ( ba-1 (hl ,k~)) .  
h,k h,k 

Proof: (1) Condition (1.3) is equivalent to 

~ h , .  (kl. c)i(h~,k~) = ~ i (h l ,k~ ) (h~k2 .  e), for all ~e  R. 

Thus 

E hll" (k11" (Oh2k2a))ff(hl2, k12) ----- E ff(hll' k11)h12k12" (Oh~k,a), 

SO 

hi" (kl " (Ohsksa))i(h2, k2) = ~ i (h l ,  kl)h2k2 • (ehakaa) -~ if(h, k)a. 

Then 

0k, o,, [h2. (k2. (0h, k, a))i(h3, k3)] = ~ 0k, 0,, (i(h2, k2)a). 
h,k k,k 



52 S. M O N T G O M E R Y  Isr. J .  Ma th .  

Since 0 anti-measures R, the left side equals 

h,k h,k 

(2) Here we use that (1.3) is equivalent to 

~-a(hl, kl)h, .(k, .c)= ~(haka- c)~-a(h~, k2) 
for any c 6 R. Thus 

h,k h,k 

o r  

h,k h,k 

Then 

Ck, Ch, [a -x (h2, k2)h3" (k~. (¢h, k, b))] = E Ck, ¢h2 (b a-1 (ha, k, )). 
h,k h,k 

Since ¢ anti-measures R, the left side equals 

h,k 

2. BiinvertibUity,  cont inui ty  and  the  coradical  

In this section we show that if the coradical of H is cocommutative, then any 
twisted action ~o of H is fully biinvertible; if in ~ddition H is pointed, then ~o, 0, 

and ¢ are all Y-continuous. 

We first recall some elementary facts about coradicals (see [SD. For any 

coalgebra C, the coradical  Co is the sum of the simple subcoalgebras. C is 

pointed if all simple subcoalgebras are one-dimensional; when C -- H, a Hopf 

algebra, this is equivalent to saying that H0 -- kG, the group algebra of the set 

G --- G(H) of group-like elements of H. In general Co determines the coradical  

f i l t ra t ion {C,} of C; Cn C_ C ,+h  all n, C = U,__.0 C, ,  and 
n 

AC. C_ ~-~ C~ ® C._~. 
i=e 

c. can be d,~e~bed inductively ~a C. = A-*(C ® C.-, + Co ® C) (see [S, 

9.0.0]). 
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2.1 LEMMA: Let ~ be a twisted action of H on R, and let C be an S-stable 

cocommutative subcoalgebra of H. Then ~ is fully biinvertib]e when restricted 

to C. For any h • C, the inverse 6 of ~o is given by 

Oha = E Sha . [a -1 (h2, Sh3)a a(h,,Sh5)] . 
h 

Proof." First, using that S is the (convolution) inverse of idR, it follows from 

(1.3) that for all a • R, h • C, 

(1) E h  Shx. (h2. a) = ~,h a (Shl, h2) a a -1 (Sh~, h4), 

(9) Eh hi. (Sh2. ~) = E~ ~ (hl, Sh~) ~ ~-~ (h~, Sh,). 
It now follows from (2) that (~ • O)(h)a = a, all a • R, h • C. For 

h 

= ~ a(hl ,Sh2)a -1 (ha,Sh,)a a(hs, Sh6)a -1 (hv, Shs) 
h 

= a .  

We next claim that ~ h  a-1 (Shl, h2) [Sh~. a (h4, Shs)] is in the center of R. For, 

using (3) applied to Sh it follows that 

shl .(h2 .~)= ~ Shl .(h2 .(Sh~. 0s,,~)) 
h h 

= E Shl" [a(h2,Shs)(Os~,a)a-l(hs,She)] 

= ~ [Shl. ~(n,, sh,)l,~[sn, • ,,-l(h~, Sh~)l. 
h 

Comparing this with (1) and using that ~ h  Shz.  a-l(h2,  Shs) has convolution 

inverse E h  Shl .  a(h2, Sh3) in Hom(C ® C ® C, R) proves the claim. 

Finally, we check that (8 * ~)(h)a = a, all a E R, h E C. 

0,,(h2 .a) 
h 

= ~ Shl .  [a-l(h2, Sh3)(h,. a)a(hs, Sh~)] 
h 

= ~ [Shl. a-l(h2,Sh3)]Sh,. (hs.  a)[Sh6, a(hr,Shs)] 
h 

= ~ [Shl. ~r-l(h2, Sh~)]a(Sh4, hs)a a - l (Sh , ,  hT)[..,eh8 • a(hg, Shlo)] 
h 

~ a  
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using the claim. Thus ~ is invertible on C. Since C is cocommutative, ¢ = 8 on 

C and so ~ is biinvertible. It is clear from the form of 8h that  it preserves any 

C-stable ideal of R. | 

2.2 COROLLARY: Let ~o be a twisted action of H = kG on R. Then qo is fully 

biinvertible and the elements of G act as automorphisms of R. 

Proof: The first statement follows from 2.1, since H = C is cocommutative. Now 

if g E G, 09a = g-1 .  [a-l(g,g-1)a a(g,g-1)]; here a- l (g ,g  -1) = a(g,g-1) -1. 

Now g. OaR = a gives that  g is onto, and 8g(g. a) = a gives that  g is one-to-one. 

Thus ~ = ~(g) is an automorphism of R. | 

2.3 PROPOSITION: Let ~ be a twisted action of H on R. I.f H is pointed, then 

qo is YZ-continuous. 

Proof.." We use the Taft-Wilson theorem which describes the coradical filtration 

of H [TW]. As noted above, H0 = kG, where G = G(H). For n > 1, and h E H~, 

h ~ H , - 1 ,  we may write 

h =  ~ hx,~, w h e r e A h z , y E x ® h x , ~ + h ~ , y ® y + H n _ l ® H n _ l .  
z , y E G  

This means that  m o d H , _ l ,  h acts on R as a sum of x, y-derivations. We proceed 

by induction on n to show that  if h 6 Hn and I 6 ~', then there exists J 6 ~" 

with h .  J C_ I .  

The case n = 0 has already been shown in Example 1.10. Assume it is true 

for n - 1, and choose h 6 H , ,  h ~ H , - 1 .  Since h is a finite sum of hx,y, it suffices 

to assume h = hz,y, some x, y 6 G. Write 
m 

Ah = x ® h + h ® y + ~ zi ® wi, where zi, wi 6 H,-1 .  
i=1 

Given I E ~ ,  we may choose J E .T such that  zi • J ___ I ,  all i = 1 , . . .  , m by 

induction on n. Let K = J f3 (z - 1 .  I )  f3 ( y - x .  I )  E ~', and choose a, b E K .  Then 

h. (ab) = ( x . a ) ( h .  b) + (h .a ) ( y .  b) + Z ( z i ' a ) ( w i ' b )  
i 

C I ( h . b ) + ( h . a ) I +  E I ( w i . b )  C I. 
i 

Thus h-  K 9- C I .  Since K 2 E ~', the result is proved. | 

The next l emma is due to Takeuchi; we include the proof since it is the 

actual construction of the inverse which we shall need. 
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2.4 LEMMA ([T, Lemma 14]): For A an Mgebra and C a coaJgebra, a map 

f E I-Ion(C, A) is inver~ible (under convolution) if  and only i f  f [Co is inert- 

ible in Hom(Co, A). 

Proof." Assume f [Co is invertible in Hom(C0, A), and let g 6 Hom(C0, A) be its 

inverse. We may extend g to an dement gl E Horn(C, A), by defining gt __. 0 on 

a vector space complement of Co. First set 7 -- r/o e - f * g~; then 7 [co = 0. 

By induction on n it follows that 7 "*+z -- 0 on Cn, where 7"* is the n ~h power 

of 7 in Hom(C, A). Thus Z~=0 7"* is well-defined, and it is an inverse of f * g'. 

Thus f has a right inverse g~ * ~'*>_0 7"*- Similarly, setting # = ~/o e - g~ * f, 
oo "* 

we see ~'*=0 P is an inverse for g~ * f, and thus f has a left inverse. Thus f is 

invertible in Hom(C, A). | 

2.5 PROPOSITION: Let ~o be a measuring of R by the coalgebra C, and 0 and ¢ 

as in 1.1. Then 

(1) ~ is invertible (resp. anti-invertible) in Hom(C, End R) ¢:~ ~ Iv0 is invertible 

(resv. anti-invertible) in Horn(C0, End R). 

(2) 0 (resp. ¢) is fully H-stabilizing ~ 0 [co (resp. ¢ Ico) is fully H-stabilizing. 

(3) 0 (resp. ¢) is YH-continuous ~ 0 Iv0 (resp. ¢ [co ) is YH-continuous. 

(4) Assume ~o is Y-continuous. Then O (resp. ¢) is Y-continuous ~* 0 ]co(resp. 

¢ leo ) is Y-continuous. 

Proof." We use 2.4 with A = EndR. Then the invertible part of (1) follows 

immediately. For the anti-inverse ¢ of ~, replace C by its opposite coalgebra C°P; 

then C °p anti-measures R, and ~ determines an element ~op in Hom(C °P, End R). 

Then 2.4 gives an inverse of ~op in Hom(C°P,EndR); this inverse becomes an 

anti-inverse of ~ in Hom(C, EndR).  This proves (1). We note that the use of 

C °P also applies in (2) - (4), and thus it will suffice to consider 0. 

We prove (4), as (2) and (3) are almost identical (although (2) is a little 

easier). Thus assume 0 [co is Y-continuous. Using f = ~o and g [Co in 2.4, note 

that g' is also Y-continuous on C. Since f and gl are Y-continuous, it follows 

that f * g' and f * f are Y-continuous by 1.7(2), and thus that 7 and # are 

~--continuous. By induction all 7"* are ~'-continuous, and since 7 "*+1 = 0 on 

C'*, ~-'],_>0 ")'" is 5r-continuous. Thus the map g' * ~"]'*_0 7'* is Y-continuous; this 

map is 0 by uniqueness of inverses. | 

2.6 THEOREM: Let ~ be a twisted action of H on R. 

(1) If rio is cocommutative, then ~ is fully biinvertible, 
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(2) I f H  is pointed, then a/so ~,0 and ¢ are ~'-contlnuous. 

Proof." 2.1, 2.3 and 2.5, since 0 = ¢ on H0. | 

Thus all our work here applies to the known pointed Hopf algebras; in par- 

ticular this includes any Hopf algebra of the form K # k G ,  where K is irreducible, 

as well as the examples mentioned in the introduction. 

3. Extending twisted actions to quotient rings 

We consider here several quotient rings of the ring R. First, we use the filter Y" 

of ideals of R which have zero annihilator, as in Section 1. 

Let Qt (respectively Qr, Q) be the left (respectively right, symmetric) Mar- 

tindale quotient ring with respect to ~', see [P, Chapter 3] for the case of prime 

rings; arbitrary rings are considered in [A]. R embeds into Qt(resp. Qr) as right 

(left) multiplications, and any q E Qt (resp. Q~) has the property that there 

exists I E j r  such that Iq C_ R (resp. qI C R). The symmetric quotient ring can 

then be described as 

(3.1) 
Q = {q E QtlqI c_ R, some I E ~'} 

= {q E Q~llq c_ R, some I ~ Y} .  

As in [P], it is also seen to be 

Q -'- 5_m {(f, g) I f: RI --~ R, g: IR --~ R and (a f )  b -- a (gb), 
(3.2) le~ 

all a, b E it, for some I E ~'}. 

Here g is written on the left and f on the right. In this formulation R ~-~ Q via 

a ~ (r , ,£,) ,  where ra (resp. £,) denotes right (left) multiplication by a. 

When H acts on R, a smaller quotient ring may be constructed, which 

will be very useful in studying crossed products. Thus we repeat the above 

constructions, replacing jr  by ~'H, the filter of H-stable ideals of R with zero 

annihilator. Thus one obtains t r QH, QH, and finally QH, the H-symmetric ring of 

quotients of R. Note that QH C Q, and similarly Q~ c Qt and Q~H C Qr. 

3.3 LEMMA: Let ~ be a twisted action of H on R. 

(1) Assume ~ is invertible. If 6 is ~-continuous (resp. Y:H-continuous), then 

extends uniquely to a twisted action on Qr (resp. Qrti ) as follows: For 
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I E J:, g: IR --~ R, and h E H, choose d E ~" such that Oh(o J C_ I, for a// 

h(o in Ash. Then define h . g: J --* R by 

(h .  g), ,  = h o )  • R, 
h 

for a / / a  E J. 

(2) Assume ~o is anti-invertible. If ~ is ~-continuous (resp. ~'n-continuous), 

then ~o extends unique/y to a twisted action on Qt (resp. QtH) as follows: 

For I E jz f: RI ~ R, and h E H, choose J E ~r such that ¢h¢o J C_ I, for 

all h(o in Ash. Then define h .  f :  J --* R by 

h 

for a/l a E J. 

Proof." (1) The proof follows the outline of Cohen's argument [C1, Theorem 18] 

for the case when R is an H-module algebra, replacing Sh by t~h and using the 

~'-continuous hypothesis to replace I by J where necessary. Thus one sees that  

h • g e Q~ and this action extends the H-action on R. However, we give the 

details to see that  H measures Q~ since the argument in [C1] contains a small 

error and the domain of a is not given. Thus let g, g' E Q~; we may find I E ~" 

such that g, g': I --* R and thus gg': 1 a ~ R. Now choose J E ~" such that 

(hi • g')J _C R and 0a~J _c I, and then choose K E ~" such that 0h~K C_ j2,  for 

all h(0 in A4h. Then for any a E K, 

g l (h2 ,  g')a = 
h 

(all terms make sense by our choice 

since .g' • Thus 

agree on K.  

~ ( h l "  g)h2" [g'Ohsa] 

hi" [g$h,(hs" (g'Oh, a))] 

hi. [gg'(8,,a)l 
(h.gg')(a) 

of J, K and the fact that hs • (g'0h4a) = 

h.gg' = ~ h  (h, "g)(h2 "g') as the functions 

Next we show that the twisted module condition holds in Qr. Let g E Qr 

and I E ~" with gI C_ R. Then choose J E ~" such that O~,k~J C_ I for all hihi in 
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Ashk. Then for all a E J, h, k E H, 

Za(hl,kl)(h2k2"g)a= 
h 

Z a(hl, kl)h2k~. [g(Shsk, a)] 

= E ( h l "  (kl" [g(ah~k,a)l))a(h~,ks) by (1.3) 

= ~--~ha "(kl "[g(Oh, k,a)Ok2Oh2, (h3,k )]) by 1.1 (1) 
h 

= ~_, h , .  (k , .  [g(eh,k,a)(~r(h3,ks)a)]) by 1.13 (1) 
h 

= Z (h,. (kl" g))(a(h2, k2)a. 
h 

Since this holds for all a E J,  it follows that 

Ea(hl ,k ,)(h2k2"g)=Za(h,  kl"g)(h2,k2) 
h 

and thus the TMC holds in Qr. 

Finally, we show that this extension of ~ to Q is unique. Thus assume ca' 

is another extension of ~ to Qr, and write ~ g  = h * g, for g: IR ~ R, I E .T'. 

Choose J as before and let a E J. Then 

(h • g)a = ~ (hi * g)[h2 . (en~a)] 

= hi • [g(0h, a)l 

= (h -g )a .  

S i n c e h * g = h . g o n Y ,  infact h * g = h . g .  

(2) To see that h. f E Qt and that this extends the H-action on R is similar to 

the argument in [C], on the other side, using ¢. [Ch, 3.3] shows that H measures 

Qt when ¢ is fully H-stabilizing and his argument works here, with the minor 

adjustment as above of choosing K so Ch¢o K C_ I J, all h(i) in Ash. We check the 

twisted module condition: Let f E Qt with I E ~ such that I f  _C R, and choose 
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J 6 iT such that ~l'h,k~J C I f o r  all hiki 6 A3hk. Then for all b 6 J, h,k 6 H, 

b ~  (hlkl. f).-1 (h2, k2) 
h 

= ~ h~k~. [(¢~ik~b) f] ~-I (ha, k~) 

= ~-1 (h~,k~)h3. (k3. [(¢,,k,b) f]) by (1.3> 

= ~ h,. k,. [(¢~¢,,~-~ (h~, k~))(¢~,~,b) f] by ~.1(2) 

= Z b a - l ( h l ,  kl) (h2"k2"f) .  

Since this holds for all b 6 J,  it follows that the TMC holds Qt. 

The uniqueness of the extension of ~ to Qt is proved similarly to the argu- 

ment for Qr, only using ¢. 

Clearly one could replace iT-continuity by iTH-continuity throughout. Thus 

3.3 is proved. | 

3.4 THEOREM: Let ~ be a biinvertible twisted action of H on R. 

(1) If8 and ¢ are iTH-continuous, then ~ extends uniquely to a twisted action 

of H on Q H. 

(2) If 8 and ¢ are iT-continuous, then ~ extends uniquely to a twisted action 

of H on 62. 

(3) /f~ is iT-continuous, then the extension of~ to Q is also iT-continuous. 

Proof: We prove (2), as the argument for (1) is the same. We need to define 

an action of H on Q. To do this, we use 3.3 and the characterization of Q in 

3.2. Thus choose q 6 Q; q is the equivalence class of (f ,g) ,  where for some 

I 6 iT, f: RI -* R, g: IR ~ R, and (af)b = a(gb), all a, b 6 I. Consider f and 

g as representatives of elements in Qt and Qr, and use 3.3. Thus we may define 

h.q -- class of (h. f ,  h.g). To see that h.q 6 Q, choose Y 6 iT such that ~bh, Y C_ I, 
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Oh~J C_ I for all hi in A3h, and choose a,b • J. Then 

[a(h. f)]b = ~ ( h ~ .  [(¢h, a)]fl)b 

= ~ ( h ~ .  [(¢,, a)/l)h3 • (0h, b) 
h 

= ~ h2. I((¢h, a)f)(Oh, b)l 

= E h 2 .  [(¢hta)(g(Ohsb))] since Ch, a, Ohsb • I 

= [h3. (g(0h, b))] 

= E a[hl. (g(0h, b))] 

= a [ ( h .  g)b I. 

By using I N J E ~ as the ideal, this shows h .  q E Q by 3.2. 

The fact that this action measures Q, extends the action on R, and satisfies 

the twisted module condition now follows from 3.3, as does uniqueness. 

(3) Choose an ideal I E ~(Q),  and le t /1  = 1 I"1 R. Then it is easy to see that 

/1 E ~'. For if rI1 = 0, choose any q E I. Then there exists J E ~ such that  

qJ C R. Thus qJ _C/1 and so rqJ = O. Since J E ~-, it follows that  rq = 0. 

But then r I  = 0, which implies r = 0. Similarly I l r  = 0 implies r = 0, and thus 

I1E  ~'. 

Now, ass',lme we are given I E ~(Q) and h e H. Since ~o is ~-continuous, 

there exists J E F such that h(2) • J _C I A R = /1 for all h(~) in Ash. Let 

J' = QJQ; J~ • .~(Q) since J has no annihilator in Q. Now h .  QJQ = 

Y~.(ho) • Q) (h(2) • J )  (h(3) • Q) c_ Q(I A R)Q c_ I. Thus ~, is 9r(Q)-continuous. 

I 

3.5 COROLLARY: Let qo be a twisted action of H on R. 

(1) If  Ho is cocommutative, then qo is fully biinvertible, and the H-action ex- 

tends uniquely to a biinvertible twisted action on QH. The extensions of 0 

and ¢ are ~'H( QH )-COntinuous. 

(2) If  H is pointed, then ~o is biinvertib/e, qo, 0 and ¢ are Jr-continuous, and 

the H-action extends uniquely to a biinvertib/e twisted action on Q. The 

extensions of qo, 0, and ¢ are aH Y'(q)-continuous. 

Proof." 2.6 gives that ~o is fully biinvertible and the appropriate continuity prop- 

erties on R. 3.4 gives the extension of ~ to Q and QH. But now apply 2.6 to Q 

and QH to see ~o, 0 and ¢ are ~'(Q) or 9VH(QH)-continuous. I 
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The Corollary raises the question as to whether it is true in general that 

a biinvertible twisted action (with 0 and ~b continuous) extends to a biinvertible 

action on Q or QH. The next lemma shows that 0 and ~b extend to one-sided 

quotient rings. 

3.6 LEMMA: Let ~ be a twisted action o{H on R. 

(1) /.f ~o is invertible, then 0 extends to Qt ; i f  also ~o is ~'-continuous, then 8 

extends to Qt, as follows: 

For f : / z I  ~ R, I E ~', h E H, choose J E ~ such that h(/) • J C_ I, al/ 

h(o E Ash. Then de,  he 8~f: J --* R by 

h 

[or all a E J. 

(2) he~o is anti-invertible, then ~b extends to Qrll ; If also ~o is ~'-continuous, then 

~b extends to Qr, as follows: 

For g: IR ~ R, I ~ ,~, h E H, choose J E Y such that h(o • J C_ I, all h(o 

in A3h. Then define ~bhg: J ~ R by 

(~b~g)a = E ~bh, [g(hl • a)] 
h 

for all a E J. 

(3) / f ~  is biinvertible and extends to Q~ and Q~  (respectively, extends to Qt 

and Q r and is .~-continuous), and # and ~b are ~'H-continuous (respectively, 

~r-continuous) then # extends to an inverse of ~ on Q t  and Qt and ~b 

extends to an anti-inverse of ~ on Q~ and Qr. 

Proof: (1) First note that 8hf E Qt. For, choose a E J, r E R; then 

h h 

= E Oh,(h3.r)Oh,[(h,.a)]q as 0 anti-measures R 
h 

= Sh I(h . = S f). 
h 

Thus 0hf is a left R-horn of J to R, so determines an element of Qt or Q~.  

The proof of (2) is similar. 



62 s. MONTGOMERY Isr. J. Math. 

(3) Now assume that ~ is biinvertible. We first check that 0 is an inversc for 

~. Thus let f, I, and J be as above, and a E J. Then 

= Z O t ' , ( h 4 .  [¢t'a(h2. a)lf) by 3.3(2) 

= ~ 0h , (h , .  (~(h~)a/))  

= ~_OI, x(h2. (af)) = a e(h)f  

and thus 0 • ~(h) = e(h)id. In the other direction, 

= ~ [ h 2 .  (¢t', a)l[ha. (ot', f)] 

= ~ ( h , ) a  ~(h~)f = ,, ~(h)f.  

Thus 0 is an inverse for ~ on Qt. 

That ¢ is an anti-inverse of ~ on Qr follows similarly. Thus let g, I and 

J be as above and b E J. Then 

= Z e h ,  h l .  [gOt,, (ha" b)l by 3.3(1) 

= ~ ¢ t ' , h , .  (gb) = ~(h)gb 

and 

[ ~ h 2 "  (¢h,g)] b= ~_h2.[(¢h,g)(Ohsb)] by 3.3(1) 

= ~(h2Ch,g)(haOt' .g)  = ~(h)gb. I 

It is interesting to note that tl~e extension of 0 being an inverse for the 

extension of ~ requires the existence of ¢, and similarly the extension of ¢ being 

an anti-inverse of ~ requires 0. However, we do not know in the above situation 

whether or not 0 and ¢ stabilize Q or QH. The question reduces to the action 

of the coradical as the next lemma shows. 
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3.7 LEMMA: Assume ~o is a biinvertible twisted action o f t  on R and that ~o, O, 

and ¢ are U-continuous (resp. 0 and ¢ are JZH-continuous). 

(1) ehQ  c Q (resp. ehQ  c_ QH) for aJ1 h • Ho, then OhQ c Q (resp. 
OhQH C QH) for a/l h • H. 

(2) / f  ChQ C_ Q (resp. ChQH C_ QH) for all h • Ho, then ChQ c_ Q (resp. 

ChQH C_ QH) for all h • H. 

Proof: (1) We use the construction of 6 as in 2.4 and 2.5. Thus let f = ~ and 

define g~ by gl = 0 on H0 and g~ = 0 on B, where H = H0 ~ B as vector spaces. 

Then certainly g~Q c_ Q, for all h • H. Also note h. Q c_ Q for all h by Theorem 

3.4. 

Write Ah = Y~'~i hi ® h~. Then for any q • Q, 

i i 

Thus for 7 = ~/o e - f • g', 7hQ C Q, all h. Since 0 = g' * ~,_<0 3'", it follows 

that OhQ c_ Q, all h q H. Clearly we could replace Q by QH. 

(2) Use the fact, as in 2.5, that ¢ is the inverse of ~o °p in Hom(H°P,EndR), 

constructed as above. | 

When the H-action extends to both quotient rings (as in the case of H 

pointed; see 3.5) then something can be said about the invariants in Q and QH. 

3.8 LEMMA: Let ~o be a biinvertible twisted action of H on R, which extends to 

QH and to Q. Then Qtt = (QH)H; that is, the invariant rings are the same. 

Proof." Since QH C Q,(QH) H c QH trivially. Thus, choose q E QH. Since 

q E Q, there exists I E ~ ' s u c h  that qI, Iq C R. By 1.12, H . I i s  an H- 

stable ideal of R containing I. Thus H • I q ~'H. Thus it will suffice to show 

q(H. Z), (H.  I)q CC R. Since q e Q(R) H, 

h . (qa) = y]~(hl . q)(h2, a) = ~ e(hl)q(h2 . a) = q(h . a), 
h h 

a i l h E H ,  a E R .  

Thus q(h. I)  = h. (qI) c_ h. R c_ R. Similarly (H. I)q _C R and so q E QH. | 
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4. C r o s s e d  p r o d u c t  ac t ions  

In this section we specialize to a crossed product action ~o; recall a must satisfy 

the cocycle condition (1.4). We first consider some sufficient conditions for ~o to 

be biinvertible, generalizing a result of [Ch]. We then consider crossed products 

over the various quotient rings of R. 

Thus, let R # a H  be a crossed product, as in (1.5). Let 7 E Hom(H, R#uH)  

denote the map h ~-~ l # h .  It is proved in [BM] that 7 is (convolution) invertible 

whenever a is invertible, though we shall not need the actual formula for 7 -1. It 

is also noted in [BM], [BCM] that for all h E H, a E R, 

(4.1) ~ , a  = h . a =  E 7(hx)a7-1(hz)" 
h 

We will see that 0 and ¢ can take similar forms. The first part of the next 

theorem is due to Chin [Ch, 1.3]. 

4.2 THEOREM: Let R # a H  be a crossed product with action ~o and let 7 be as 

above. 

(1) I f  7 has an anti-inverse ~, then qo has an anti-inverse given by 

Cha = E 7(h2)aT(hl)" 
h 

(2) // '7 -1 has an anti-lnverse ~, then ~o has an inverse given by 

O~a = E 7-X(h2)ar?(hl)" 
h 

Moreover, Ch and Oh stabilize MI H-stable ideals of R. Thus ~o is fully 

b'dravertible whenever 7 and 7 - I  are anti-invertible. 

Before proving the theorem, we consider a basic example of "~ and ~. 

4.3 Example: Assume that the coeycle a is trivial. Then 7 -1 is always anti- 

invertible, with ~(h) = l # S a h .  For, recall that in this case 7-1(h)  = l # S h .  

Then 

Similarly 

= X#Sh S2hl = l#S((Shl)h ) 
h 

= l # S ( e ( h ) .  1) = e (h) l#1 .  

h 
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If also S is bijective, then 7 is always anti-invertible with "~(h) = l # S - ~ h ;  this 

follows from the fact that S -1 is an anti-inverse for idH in Horn(H, H). 

Returning to the theorem, note that it is straightforward to check that ~b 

and 0 as defined in 4.2 are a formal inverse and anti-inverse for ~o; the difficulty 

lies in showing that ~bha and Oba are elements of R, for all a E R, h E H. 

Chin proves this for ~bha by using [DT, Prop 5]. For Oha we must first prove an 

extension of Doi and Takeuchi's result. 

First we need some notation. As before, for C a coalgebra and A an algebra, 

the convolution product in Horn(C, A) is denoted by *. The anti-convolution 

product will be denoted by x; that is for f , g  E Hom(C,A), 

(f 
c 

In this notation, the above definitions mean that 

7 x ~ = ' ~ x 7 = ~ . i d  and 7 - 1 x g , = ' ~ x 7 - a = e . i d .  

Now consider a right H-comodule algebra A, with structure map p: A 

A ® H. As in [DT], we also consider the two algebra maps i1: A ~ A ® H given 

by i l ( a )  = a ® l and i2: H ~ A ® H given byi2(h)  = l ® h. Observe that 

iz has a convolution inverse i~l (h)  = 1 ® Sh,  and as in Example 4.3 i~ 1 has 

an anti-inverse ~(h) = 1 @ S2h. We apply these maps when A = R # , , H ,  with 

p(,#h) = Eh "#hl ® 

4.4 LEMMA: ConsiderA = R # ~ H ,  with P,7,il  and iz as above. Then 

(1) [DT] p o 7 -1 = i~ I • (it o 7-1). 

(2)  i f ,~ e~dst~, ~hen p o ~ = ( i l  o ~)  • ~. 

Proo£" (1) is [DT, Prop. 5]. For (2), since p is an algebra map and ~ is the 

anti-inverse of 7 -1, it follows that p o ~ is the anti-inverse of p o 7 -1. Now (2) 

will follow from (1), provided we show that (il o ~) • ~z is the anti-inverse of 

i~-1, (il o 7-1). To see this, note that the image of il in A ® H commutes with 
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the images of i~ 1 and of 32. Then for any h E H, 

[(iI °9)* 32] x [i~ I * (il o 7-a)] (h)= ~ i,~(h3)~2 (h~)i~ I (h,)i,7 -I (h~) 
h 

= EilXf(h3)i17 -1 (h,)~2 (h4)i~' (h,) 
h 

= ~ (# (h,)~-'  (h,) @ 1) ~2 (h,)i~ 1 (<) 

= ~ ~ (h,) (1#1 @ 1)~ (h~)i~ 1 (hi) 

= ~ (h)(1#1 ® 1). 

By uniqueness of anti-inverses, (2) is proved. | 

Proof of Theorem 4.2: As discussed above, we must show 0hr E R for all 

r E R, h E H. Considering A = R#,H as an H-comodule algebra as above, we 

know that R = R#1 = {a E A] p(a) = a®1}, the coinvariants ofA [BCM, 5.10]. 

Thus it suffices to show p(0hr) = 0hr ® I. Now 

P(Ohr)=P(~7-1(h2)rXl(hl)) 

= ~ p o .I -I (h~) p (r) p o ~ (h) 
h 

= ~ [~fl, (ii o ~-i)] (h2)p(r)[(~, o ~),~2] (h,) 
h 

= ~ i f  1 ( a , ) i ~  -1 (a4)i~ (~#1)i1~ (al) ~2 (a2) 
h 

= E i t  (7 -1 ( h 4 ) ( r # l ) q ( h l ) ) i ~  -1 (ha)Z= (h=) 
h 

h 

----- il (Ohr) = Ohr ® 1. 

Thus 0hr E R and so 0 E Hom(H, EndR). 

Finally if I is an H-stable ideal of R, then 8h I C Rfl AIA C_ Rfl (I#~H) = 

I. Thus I is Oh-stable. | 

The theorem raises the question as to when 7 and 7 -1 are anti-invertible; 

in fact this is not always the case, see [MSc]. We do have the following: 
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4.5 LEMMA: 7 and 7 -1 are anti-inver~ible provided their restrictions to Ho are 

anti-invertiMe in Hom(Ho, End R). In particular this happens if rio is cocommu- 

tative. 

Proof: We use Lemma 2.4 applied to Hom(H~°P,EndR) as in 2.5 to prove the 

first statement. Now if H0 is cocommutative, then ~ = 7 -1 and q = 7 on H0, 

proving the lemma. | 

We note that Chin [Ch. 1.4] proved 7 was anti-invertible when H0 = k .  1 

(that is, H is irreducible). 

For the rest of this section, we consider a crossed product action ~o which 

is fully biinvertible; by 3.3 and 3.4, ~o extends to a twisted action on Q~/, Q~/, 

and QH. Since the cocycle condition extends trivially, in fact these extensions 

of ~0 are all crossed product actions; thus one may form the crossed products 

Qrn#~,H , QtH#~H and QH##H. We wish to study the relationship between 

these crossed products and the ordinary right, left, and symmetric quotient tings 

of R # , H .  First we need a lemma: part (2) is in [Ch]. 

4.6 LEMMA: Let ~o be an anti-invertible crossed product action of H on R. Then 

(1) R # ~ H  ~- H ® R as right R-modules, 

(2) I # n  = ( I # H ) ( I # 1 )  for  any  H-stable, ell-stable i d e a / I  of R, 

(3) if x e J:u, then X#~I ~ J:(R#~H). 

Proof.." (1) The argument is the same as [KT, 1.6], replacing S -1 by the anti- 

inverse ¢ of ~0. That is, define a: H ® R ~ R # , H  by a(h ® r) = ( l # h )  ( r#1 )  

and a -1 = ~ by ~(r#h)  = ~h2®¢h,r. It is easy to check that a o ~  and ~ o a  are 

the identity, and clearly a is a right R-map, where R#~,H is a right R-module 

via tight multiplication by r#1 ,  any r E R. 

(2) is [ca.  1.51 and is similar to showing a o/~ = id in (1). That is, for 

a E I, h E H, 

a#h  = ~ _ h 2 .  (¢hta)#ha  = ~-~( l#h2)  ( ¢ h t a # l )  E ( I # H )  ( I # 1 )  
h h 

and ( I # H )  ( I # 1 )  _C I # H  since I is H-stable. 

(3) Choose w E R # ~ H  such that ( I # 1 ) w  = 0. If w = ~ a~#hi t hen  0 = 

(I#1)w = ~ i  Iai#hi. Since I ~ ~'n, Iai = 0 implies ai = 0, all i, and thus w = 

0. If m ( I # H )  = 0, then w ( I # l )  = 0. By part (1), the isomorphism ~: R#~I-I 



68 S. MONTGOMERY Isr. J. Math. 

H ® R takes r#1 to 1 ® r. Thus 0 = w ( l # l )  = ~(w(l#1)) -- ~(w)(l ® I). But 

~(w) = ~ hi ® ri, some hi E H,  ri E R, mad so 0 = ~E]i hi ® rJ. Then riI = O, 
all i implies ri = 0 and so w = 0 as before. Thus I#H E ~(R#~H). | 

4.7 THEOREM: Let V~ be a fu//y biinvertible crossed product action of H on 

R. Then each crossed product above embeds into the corresponding quotient of 

R#aH; that  is, 

(1) Q~H(R)#~H ~ Q" (R#,H) ,  
(2) QtH(R)#qH ~ Qt ( R # a H ) ,  

(3) QH(R)#~H ~ Q (R#At). 

Proof." We prove (3), since the others are similar. We first choose w • QH(R) 
and show that  it can be extended to an element ~ e Q(R#aH). Since w • 

QH(R), there exists I • ~'H such that  wI, Iw C R. Let K = I#H; then 

g • ~'(R#~H) by 4.6. Now define dJ: g --* R#~H by ~(a#h) = w(a)#h for all 

a • I ,  h • H.  We claim that  ~ is a right R # H - m a p .  For choose r • R, k • H .  

Then 

w((a#h)(r#k))=dJ(Ea(hl"r)a(h2'kl)#hak2)kh,, 

= ~ w  (a(h~.,')~ (h2, k~)) #h~k~ 

= ~ (~) ~ (h,. r) ~ (h~, h) #h,k~ 
h 

= (~ (~) #h) ( ,#k) = (~ (~#h)) ( ,#k) 

where we have used that  w is a right R-map.  Thus d~ • Q(R#aH). 

To see tb • Q(R#~H), it suffices to show that  Ld~ C R#~H, for some 

L • Y(R#~H). First, we note that  if a • I ,  then ( a # 1 ) ~  = aw#1. For if 

b#h • K, then 

(a#l)d~(b#h) = ( a # l )  (wb#h) = awb#h = (aw#l)(b#h). 

Thus [ ( a#1 )~  - (aw#l)]K = 0 in Qr(R#,H); it follows that  (a# l )dJ  = aw#l. 
Let u = ( l # h ) ( a # l ) ,  for h E H,  a e I .  For any b#k e I#H = K, 

uFv (b#k) -- ( l #h )  (a# l )  tb (b#k) -- ( l #h )  (a# l )  (wb#k) 

= ( l # h )  (awb#k) = ( l # h )  ( a # l )  (b#k). 
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Thus [utb - ( l #h )  (aw#1)] K = 0, and so utb = ( l#h )  (aw#1) E R#H. Thus 

KffJ C R#H and so Fv E Q (R#,H). 
Finally we claim that the map 4: QH(R)#,,H --~ Q(R#o,H) given by 

r (~i  wi#h~) = ~ i  tbi(l#hi) is a monomorphism, where the {hi} are linearly 

independent. For, choose I E 2- such that Iwi C R, all i. Then if ~ wi#hi E 

Kerr and a E I, 

o = Z = C a # i )  ( 1 # h i )  = awi#h, R# I.I. 
i i 

Thus awi= 0, all i, all a. Since I E ~'n, this gives wi = 0, all i, and so 

Ker r = 0. It is straightforward to check that r is a homomorphism. I 

Some sufficient conditions for QH(R)#~,H = Q(R#t,H) are given in [BeM]. 

Now consider the centers of these quotient rings. C(R) = Z(Q(R)) is 

called the extended center of R, and Cx(R) = Z(Qtt(R)) is the H-extended 

center. In fact CH(R) = C(R) f3 Qx(R), since R C QH(R) C Q(R). Moreover 

C (respectively Cx) is also the center of Qt and Qr (resp. of Q t  and Q~). 

Although in general the center CH of QH is not H-stable, we use the notation 

CH(R) H to mean CH(R) f3 QH(R)H; that is the central H-invariants of QH(R). 

4.8 COROLLARY: Under the embeddings described in 4.7, 

CH(R)H #I ~ C(R#t,H). 

Proof." Choose $ E Ctt(R)H; by the proof of 4.7, X E Q(R#,H). We claim 

X E C(R#,,H). Since in general C is the centralizer of R in Q, it suffices to show 

that X centralizes Rg,,H. Since • E CH(R), it centralizes R = R#1.  For I # H ,  

choose h E H. Identifying X with $#1, 

( l # h ) ( ~ # l )  = Z h i"  )~#h2 = Z $(hl)'X#h2 -- ~ # h  -- ( ,X#1)(h#l) ,  
h 

and thus ~ centralizes I # H .  I 

We close by comparing our quotient actions and crossed products with 

Chin's. He proceeds as follows: Beginning with a fully anti-invertible crossed 

product action ~0, he extends ~0 to Q~/, and then constructs a left quotient Q~ 

of R#t,I-I using the filter ~'~ = { I # H  I I E ~'H}. Then Q~t#,,i.i embeds in 

Q~, so must be associative, and thus is a crossed product. Using this crossed 
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product, he then shows that the H-action on Q~/restricts to one on QH by using 

the map 7: H ~ R # ~ H  as in 4.1. Our methods are more direct, in that we first 

extend twisted actions to QH and QtH, then construct QH#aH and Q, tH#aH , 

and finally embed these crossed products in Q ( R # , H )  and Qt(R#~H).  It is 

not clear that Chin's Q~ is the same as Qt(R#~H)  since the filter ~ ~  may be 

smaller than .~(R#aH).  
In fact it is now known [MSc] that any crossed product action extends to the 

quotient rings Q~/, Q~/, and QH provided S is bijective; in that case biinvertibility 

is not necessary. Nevertheless it would still be of interest to know when 7 and 7 -1 

are anti-invertible, since in that case many formulas have a simpler form. 
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