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ABSTRACT

We study actions of a Hopf algebra H on an algebra R such that the action
is twisted by an invertible map o: H ® H — R; the biinvertible condition
means that these actions also have both an inverse and an antiinverse in
Hom(H,End R). When R is an ordinary H-module algebra, the action is
biinvertible if the antipose is bijective. As a new example we show that
if the H-action is twisted and the coradical of H is cocommutative, then
the action is biinvertible. After studying the continuity of these actions
with respect to the filter of ideals of R with zero annihilator, we consider
when the actions may be extended to the symmetric Martindale quotient
ring of R and its H-analog. Our results can be applied to crossed products
ER#.,H.

Introduction
Usually in studying an action of a Hopf algebra H on an algebra R it is assumed
that R is an H-module. In constructing a crossed product R#,H of H over R,
however, this is not necessarily true, since the action is twisted by the cocycle
o; this already happens in the case of crossed products of groups acting on non-
commutative rings. In fact when H is cocommutative and R#,H is a crossed
product, it is shown in [BCM] that R is an H-module if and only if ¢ has values
in the center of R.

In this paper we consider these more general actions which are twisted by a map

o: H® H — R which is convolution-invertible, although we do not require that o
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is a cocycle; in the terminology of [Sc], R is a twisted H-module algebra. We show
that many desirable properties of H-module algebras can be recovered provided
the H-action on R is invertible and anti-invertible, considered as an element of the
convolution algebra Hom(H, End R). We call such actions biinvertible; examples
include the usual H-module algebras for any H whose antipode is bijective, and
also any twisted action by a Hopf algebra whose coradical is cocommutative. Such
Hopf algebras include group algebras, enveloping algebras of Lie algebras, and
the regular functions on a unipotent algebraic group. A newer example is given
by U,(g), the quantum enveloping algebra of a complex semi-simple Lie algebra
g; in fact these Hopf algebras are pointed, with coradical the group algebra of
the obvious group-like elements. This is shown in [M2]; see also [R, Lemma 1].

Our main results concern when twisted actions may be extended to the sym-
metric Martindale quotient ring of R and its H-analog. The importance of this
property is that it enables one to define X-inner actions, that is actions which be-
come inner on the quotient. For groups such actions, introduced by Kharchenko,
proved very useful in sudying fixed rings and crosssed products, since frequently
one could reduce to the X-inner and X-outer cases (see [M], [P]). Such X-inner
actions for Hopf algebras were studied in [C] for H-module algebras and in [Ch]
for crossed products with anti-invertible actions. Other recent work on X-inner
H-actions appears in [Sc].

This paper is organized as follows. In Section 1 we formally define a twisted
action ¢, its inverse 6 and anti-inverse 1, as well as crossed product actions and
the continuity of these maps with respect to various filters of ideals of R. We
then prove some basic properties of these maps, in particular that 8 and v are
themselves “twisted” actions in a certain sense.

Section 2 is concerned with examples of biinvertible actions, and we prove the
result mentioned above: if H has cocommutative coradical Hp, then any twisted
action of H is biinvertible. Moreover if H is pointed (that is Hp is a group
algebra), then the maps ,8 and ¢ are all continuous with respect to the filter
F of all ideals of R with zero annihilator.

In Section 3 we show that biinvertible twisted actions can be extended uniquely
to the symmetric Martindale quotient ring @ of R, provided é and ¢ are F-
continuous (respectively, extended to the H-quotient ring Qg of R relative to the
filter Fy = F N {H-stable ideals}, provided 8 and v are Fy-continuous). This
extends results of [C] and [Ch]; both considered only Q#, Cohen for H-module
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algebras and Chin for “fully antiinvertible” crossed product actions. By the
results of Section 2, these results apply to all pointed Hopf algebras; moreover,
the extension of the action ¢ to @ or Qg is also biinvertible in that case. In
general, however, we do not know if the extension of ¢ is biinvertible, since
extending 8 and 1 is more difficult,

In the last section we specialize to crossed products and give a criterion for
invertibility of the action in terms of maps from H to R#,H; this parallels Chin’s
criterion for antiinvertibility. We do not know if these criteria are necessary for
biinvertibility. Finally when the crossed product action extends to Qy, we may
construct a larger crossed product Qy(R)#,H; we show that this new algebra
embeds naturally into Q(R#,H). This result is used in [BeM), where it is proved
that if H is irreducible and every non-zero H-stable ideal of R contains a regular
element, then Q(R#,H) = Qu(R)#.H.

Throughout H denotes a Hopf algebra over the field k, and R a k-algebra.
We will follow the notation in Sweedler’s book [S]; thus H has comultiplication
A: H— H ® H, counit e: H — K, and antipode S: H — H. The unit element
in H may be written as a map n: k — H. We usually abbreviate the summation
notation Ah = 37, h(1) ® h(z) by the notation Ak =Y, h1 ® hy. Also recall that
Ant1: H = H®" is defined inductively by A; = A and Apy; = (AQI™) o Ap.

1. Definitions and preliminaries

The notion of biinvertibility makes sense for coalgebras, and not just for Hopf
algebras. Thus let C be a k-coalgebra and R a k-algebra. Recall that C mea-
sures R if there exists a k-linear map ¢: C — Endi(R), written ¢.a = c- a, all
¢ € C,a € R, such that c-(ab) = 3", (c1-a)(c2-b) and ¢-1 = ¢(c)1, c € C,a,b € R.
We wish to consider ¢ as an element of the convolution algebra Hom(C, End R).

1.1 Definition: Let ¢ be a measuring of R by C.
(1) ¢ is invertible if it has an inverse § € Hom(C,End R). That is,

D e, 0¢c, =¢(c)idr = ) e, 08c,, allceC.
c c

(2) ¢ is anti-invertible if it has an anti-inverse ¢ € Hom(C,End R). That

is,

Y e, 00 =e(c)idr =) e, 0%, allceC.
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(8) ¢ is biinvertible if it is both invertible and anti-invertible.
We now assume C = H is a Hopf algebra. The next definition weakens the
notion of H-module algebras.

1.2 Definition: Let ¢ be a measuring of R by H.
(1) ¢ is called a twisted action if
(i) 1-a=a,alla€ R, and
(i1) there exists an invertible map ¢ € Homi(H ® H, R) such that

(1.3) he(k-a)=)_ o (hy,ki)(haka-a) 0" (hs, ks)
bk
allh,k€ H, a€R
(2) ¢ is called a crossed product action if it is a twisted action and in
addition
(i) o(h,1) =0o(1,h) =€(h)1, all h € H,

(iv) o satisfies the cocycle condition

14) Y [k o(ky,my)o(he, kame) = Y o(hy, ky)o(hakz,m)
h,k,m h,k
all h,k,m € H.

(1.3) is called the twisted module condition (TMC), and if ¢ is a twisted
action of H on R we also say that R is a twisted H-module algebra, as in
[Sc]. A crossed product action is precisely what is required to form the crossed
product algebra R#,H [DT, BCM]; as a vector space, this algebra is isomorphic
to R® H, and it has multiplication given by

(1.5) (afth) (b#k) = Y a(ha - b) o (he, k1) #hsksz,

hk

all h,k € H, a,b€ R, with identity element 1#1.

Now let F denote the filter of all (two-sided) ideals of R with zero left and
right annihilator, and let Fyg = {I € F| H-I C I}, the subfilter of H-stable
ideals in F.

1.6 Definition: Let I' € Hom(H,End R). Then T'is F-continuous (respec-
tively Fy -continuous) if given any I € F (resp. I € Fy) and h € H, there
exists J € F (resp. J € Fy) such that [',J C I.
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Note that I' being F-continuous is equivalent to saying that given I, the
inverse image of ', on I contains some J € F; this is just the usual definition of
continuity in a topological group, where R is a group under addition and F is a
basis of neighborhoods of 0 in R. Of course these remarks apply to Fu, as does

the next lemma.

1.7 LEMMA:
(1) KT is F-continuous, then given I € F and hy,... ,h, € H, there exists
Je€FsuchthatT, JCI fori=1,... ,n
(2) The F-continuous maps in Hom(C,End R) form a subalgebra.

Proof: (1) is clear since F is closed under finite intersections. (2) The sum of
continuous maps is continuous, as in (1). For the (convolution) product, choose
f,9 € Hom(H,End R) which are F-continuous, I € F, and h € H. Write

Ah=Y h;@hic H®H.

Then
(f*gn(r) = th.- Og;.:,(r), allr € R.

By (1) we may find J € F such that f3,J C I, all h; and then find K € F such
that g5 K C J, all k. Thus for a € K,

(f *9)n(a) = th.-(ghga) c th,-J cI. n

We also consider a property stronger than Fg-continuity.

1.8 Definition: A map I' € Hom(H,End R) is fully H-stabilizing if [',] C I
for all H-stable ideals I of R and all h € H. An action ¢ of H on R is fully
biinvertible if it is biinvertible and both 6 and 1 are fully H-stabilizing.

The terminology follows Chin [Ch], who studied crossed product actions
which were fully anti-invertible (although he called them fully “invertible”, only
1 was considered).

1.9 Example: Let R be an H-module algebra and assume the antipode § of
H is bijective. Then the action islways fully biinivertible: let fra = Sh - a and
yaa = S~1h- a. Thus biinvertibility is a natural generalization of the property
of R being an H-module.
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1.10 Example: Let H = kG, the group algebra of the group G. A measuring of
R by H corresponds to a map ¢ € Homi(H,End R) such that ¢(G) C Alg(R),
the algebra maps of R to itself. Write ¢(g) = §, for g € G. If the measuring
is twisted action, then ¢(G) C Aut(R) (see 2.2) and by (1.3) gk = gk (mod
Inn R), where Inn R denotes the inner automorphisms of R. Conversely, any
group homomorphism f: G — Aut R/InnR gives rise to a twisted action of
kG on R as follows: let § € Aut R be a coset representative for f(g); then
§h = n(g, h)gh where n(g,h) € Inn R. Let o(g,h) € R be a unit inducing n(g, h).
Then ¢(g) = § is a twisted action of G on R. Note that this construction enables
us to give examples of twisted actions which are not crossed product actions.

We remark that any twisted kG-action is F-continuous. For, given I € F
and z € G, let J =z~ .. Using (1.3),

z-(z71-I)=o(z,27!) (22! - I)o (2,27 ) C L.

For h = Ta,z € kG, use J =),z - T asin 1.7 (1).

We record some elementary properties of the maps ¢ and .

1.11 LEMMA: Let ¢ be a measuring of R by the coalgebra C and let § and v be
as in Definition 1.1. Then for all a,b € R,h € C,

(1) 8 anti-measures R; that is 63(ab) = 3, (6h,a) (64,b),

(2) ¢ anti-measures R,

(3) (h-a)b =34 k1 [a(6h,b)],

(4) b(h-a) =34 ha - [(¥n,b)a],

(5) b(Bna) = 3 6k, [(h2 - b)a],

(6) (¥na)b =3 n,[a(h1 b))

Proof:
(1) oh(ab) = Eh ohl [(‘thohsa)b] = Eehl[(()ah: ohsa) (‘Ph39h4a)]
= Eehz ‘th[(oha)(ehs b)] = Z(eh:a)(ohl b)
(2) is [C, 1.2]. Parts (3) and (4) are immediate from the definitions, and
(5) and (6) follow from (1) and (2) respectively. |

1.12 COROLLARY: Let ¢ be a biinvertible measuring of R by H, and let I be an
ideal of R.
(1) I ¢ is a twisted action, then H - I is an H-stable ideal of R containing I.
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(2) If v is fully biinvertible and I is H-stable, then the right and left annihi-
lators of I are also H-stable. Thus if R is H-prime, Fy is the set of all

nonzero H-stable ideals.

Proof: (1) That H - I is a right ideal follows from 1.11 (3) and that it is a left
ideal follows from 1.11 (4). Thus H - I is an ideal; it contains I since 1:-a = a,
all a € R. To see it is H-stable, we use (1.3): for b,k € H and a € I,

h-(k-a)=Y_ o(hy,k1)(haks - a)o ™ (hs,ks) € R(H -)RC H - I.

(2) That the right annihilator is H-stable is shown in [Ch, 2.2], using ¥. A
similar argument works on the left using 6: let B be the left annihilator of I.
Thenfora e I,b€ B,h € H,1.11 (3) gives (h-b)a =3, h1-[b(0s,a)] € H-bI =
H -0 = 0. Here we have used that 8y I C I, since y is fully biinvertible. Finally,
since R being H-prime means that the product of non-zero H-stable ideals is

non-zero, the fact about Fy is clear. |

The following useful identities can be considered as versions of the twisted

module condition (1.3) for the maps € and .

1.13 PROPOSITION: Let ¢ be a twisted action of H on R. Then for all h,k € H,
a,beR,
(1) hE (Ohgksa) Ok, O, 0 (2, k) = hz% 0x,0h, (o (h2,k2)a),
k L

(2) %2 (Brstns™ (hay k2)) ($0,0,8) = 5 b (b (s, ).
Proof: (1) Condition (1.3) is equivalent to
Y by (ki c)o(ha,ka) =) (ki ki) (hoky - c), forallc€ R.
Thus
Z hi1 - (k11 - (Bryk,0))o(ha2, ka2) = zﬂ(hu, k11)hizkiz - (Onyk,0),
SO
Y hy - (k- (Bhska@))o(ha, ka) = Y a1, ka)hoks - (Bagkaa) = o(h, k)a.

Then

Z Ok, On, [h2 : (k2 ’ (thha))a(h-’h k3)] = Z 0k10h1 (U(hz, k2)a)'
h,k hk
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Since @ anti-measures R, the left side equals
Z okuahu(h2 : (k2 * (a’uha)))oku ahn (a(h3’ k3)) = Z(ahskaa)gh 0h1 U(h27 k2)'
h,k h,k

(2) Here we use that (1.3) is equivalent to

Zd—l(hl, kl)hz . (k2 . C) = Z(hlkl i c)o"'l(hg, kz)

for any ¢ € R. Thus
> 07 (har, kar)haz - (ko - (¥nyk:5)) = Y (haskas - (¥ny 2, 0))o ™ (haz, ka2)

b,k hk
or

Za—l(h’% k2)h3 : (k3 ‘ (¢hlk1 b)) = Z(h2k2 ‘ (¢h1k1 b))a_l(hlh k3) = bd_l(ha k)'
h.k h,k
Then
hzk ¢k4"/’h4 [0-1(h2’ kZ)h3 : (k3 : (1/”'1’61 b))] = g:ipkz'phz(ba—l(hlv kl))
, Jk
Since 3 anti-measures R, the left side equals

Z ¢k43 '/"hu (a-l(h% kz)) '/’ku d’hn (h3 * (k3 : (¢h1 ky b)))
hk
=) [¥rt¥nao ™ (b2, k2))(¥n,k,0). B

2. Biinvertibility, continuity and the coradical

In this section we show that if the coradical of H is cocommutative, then any
twisted action ¢ of H is fully biinvertible; if in addition H is pointed, then ¢, 8,
and 9 are all F-continuous.

We first recall some elementary facts about coradicals (see [S]). For any
coalgebra C, the coradical Cy is the sum of the simple subcoalgebras. C is
pointed if all simple subcoalgebras are one-dimensional; when C = H, a Hopf
algebra, this is equivalent to saying that Hy = kG, the group algebra of the set
G = G(H) of group-like elements of H. In general Cy determines the coradical
filtration {C,} of C; C, CCpy1,alln, C = Unzo Ch, and

AC, C z": Ci®Ch-;.

i=0
Cn can be described inductively via Cp, = A~} C @ Cn—1 + Co ® C) (see [S,
9.0.0)).
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2.1 LEMMA: Let ¢ be a twisted action of H on R, and let C' be an S-stable
cocommutative subcoalgebra of H. Then ¢ is fully biinvertible when restricted
to C. For any h € C, the inverse 8 of ¢ is given by

Ora = ZShl . [6-1 (hz,Shg)d 0'(h4,Sh5)] .
h

Proof: First, using that S is the (convolution) inverse of idg, it follows from
(1.3) that for all e € R,h € C,
(1) ¥, Shy-(h2-a) =3, 0(Sh1, ha)a o~ (Shs, hy),
(2) T, b1 (Shy-a) =3, 0(h1,Shy)a 071 (hs, Shy).
It now follows from (2) that (¢ * 6)(h)a =a, all a € R,k € C. For

Y o 08h,(a) =) h1- (Sha- [07" (hs,Sha)a o (hs, Shs)])
k

=Y 0 (h1,Shs) o™ (hs,Shs)a o (hs,She) ™" (hr,Shs)
k

= a.

We next claim that 3, 0! (Shy, h2) [Shs - 0 (hs, Shs)] is in the center of R. For,
using (3) applied to Sh it follows that

Y Shi-(hz-a) =Y Shi-(ha-(Shs-8sn.0))
k h
=Y Shy - [o(ha, Shs)(Osa,a)o " (hs, She)]
h
=Y " [Shy - o(ha, Shs)|a[Shy - 07 (hs, She)].
h
Comparing this with (1) and using that 3", Shy - 07 2(hs, Shs) has convolution

inverse 3, Shy - o(h2,Shs) in Hom(C ® C ® C, R) proves the claim.
Finally, we check that (8 x p)(h)a=a,alla € R,h e C.

> bn,(hz-a)
h

=" Shy - [67(h2, Shs)(ha - a)o(hs, She)]
h

=Y [Shy- 07! (hy, Shs)|Shy - (hs - a)[She - 7(hr, Shs)]
h

=Y " [Sh1- 07 (ha, Shs)|o(Sha, hs)a o7 (She, h1)[Shs - o(hs, Shio)]
h

=a
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using the claim. Thus ¢ is invertible on C. Since C is cocommutative, ¢ = 6 on

C and so ¢ is biinvertible. It is clear from the form of 8 that it preserves any
C-stable ideal of R. 1

2.2 COROLLARY: Let ¢ be a twisted action of H = kG on R. Then ¢ is fully
biinvertible and the elements of G act as automorphisms of R.

Proof: The first statement follows from 2.1, since H = C is cocommutative. Now
if g € G, ba=9""[07"(g,97")a o(g,97")]; here 07 (g,97") = o(g,97")7".
Now g - 8,a = a gives that g is onto, and 8,(g - @) = a gives that g is one-to-one.

Thus § = ¢(g) is an automorphism of R. |

2.3 PROPOSITION: Let ¢ be a twisted action of H on R. If H is pointed, then

¢ is F-continuous.

Proof: We use the Taft—Wilson theorem which describes the coradical filtration
of H [TW]. As noted above, Hy = kG, where G = G(H). Forn > 1,and h € H,,,
h ¢ H,—1, we may write

h= 3" hyy, whereAh,y€2@®hsy+hsy®y+Hn1®Hao1.

z,y€G

This means that modH,,_;, h acts on R as a sum of z, y-derivations. We proceed
by induction on n to show that if A € H,, and I € F, then there exists J € F
with h-J C I.

The case n = 0 has already been shown in Example 1.10. Assume it is true
for n—1, and choose h € Hy,, h ¢ Hn_1. Since h is a finite sum of h, 4, it suffices

to assume h = h; y, some z,y € G. Write

m
Ah=$®h+h®y+2z;®w;, where z;,w; € H,_;.
=1
Given I € F, we may choose J € F such that z; - J C I, alli =1,... ,m by
induction on n. Let K = JN(z~!-I)n(y~!-I) € F, and choose a,b € K. Then

b (ab) = (@~ a)(h-8) + (- a)(y-8) + Y (s a)(wi )

CIh-b)+(h-a) [+ I(w;-b)CI.

Thus & - K? C I. Since K? € F, the result is proved. |

The next lemma is due to Takeuchi; we include the proof since it is the

actual construction of the inverse which we shall need.
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2.4 LeMMA ([T, Lemma 14]): For A an algebra and C a coalgebra, a map
f € Hom(C, A) is invertible (under convolution) if and only if f|c, is inert-
ible in Hom(Cy, A).

Proof: Assume f|c, is invertible in Hom(Cp, A), and let ¢ € Hom(Cs, A) be its
inverse. We may extend g to an element ¢’ € Hom(C, A), by defining ¢' =0 on
a vector space complement of Cy. First set v = noe — f *¢'; then v|¢, = 0.
By induction on n it follows that 4®*! = 0 on C,, where 4" is the n'* power
of 4 in Hom(C, A). Thus Y oo,y is well-defined, and it is an inverse of f * g'.
Thus f has a right inverse ¢’ * Y 5,7". Similarly, setting p = noe —¢' * f,
we see Y .., " is an inverse for ¢’ * f, and thus f has a left inverse. Thus f is
invertible in Hom(C, A4). [ |

2.5 PROPOSITION: Let ¢ be a measuring of R by the coalgebra C, and 6 and ¢
as in 1.1. Then
(1) ¢ isinvertible (resp. anti-invertible)in Hom(C,End R) & ¢ |c, isinvertible
(resp. anti-invertible) in Hom(Cy, End R).
(2) 6 (resp. ) is fully H-stabilizing & 0 |c, (resp. ¥ |c, ) is fully H-stabilizing.
(3) 8 (resp. ¥) is Fy-continuous & 8¢, (resp. ¥ |c, ) is Fu-continuous.
(4) Assume yp is F-continuous. Then 8 (resp. 1) is F-continuous & 8 |c,(resp.

¥ |c, ) is F-continuous.

Proof: We use 2.4 with A = EndR. Then the invertible part of (1) follows
immediately. For the anti-inverse 1 of ¢, replace C by its opposite coalgebra C°?;
then C°P anti-measures R, and ¢ determines an element ©°? in Hom(C°?, End R).
Then 2.4 gives an inverse of ¢°? in Hom(C°?,End R); this inverse becomes an
anti-inverse of ¢ in Hom(C,End R). This proves (1). We note that the use of
C°? also applies in (2) — (4), and thus it will suffice to consider 6.

We prove (4), as (2) and (3) are almost identical (although (2) is a little
easier). Thus assume 6 |¢, is F-continuous. Using f = ¢ and ¢|¢, in 2.4, note
that ¢' is also F-continuous on C. Since f and g' are F-continuous, it follows
that f x ¢’ and ¢’ * f are F-continuous by 1.7(2), and thus that vy and u are
F-continuous. By induction all 4* are F-continuous, and since v**! = 0 on
Cn, Enzo 4™ is F-continuous. Thus the map ¢’ * EnZO 4" is F-continuous; this

map is 8 by uniqueness of inverses. |

2.6 THEOREM: Let ¢ be a twisted action of H on R.
(1) If Hy is cocommutative, then ¢ is fully biinvertible,
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(2) If H is pointed, then also ¢,8 and 3 are F-continuous.
Proof: 2.1, 2.3 and 2.5, since 8 = ¢ on Hp. 1

Thus all our work here applies to the known pointed Hopf algebras; in par-
ticular this includes any Hopf algebra of the form K#kG, where K is irreducible,

as well as the examples mentioned in the introduction.

3. Extending twisted actions to quotient rings

We consider here several quotient rings of the ring R. First, we use the filter F
of ideals of R which have zero annihilator, as in Section 1.

Let Q* (respectively QT, Q) be the left (respectively right, symmetric) Mar-
tindale quotient ring with respect to F, see [P, Chapter 3] for the case of prime
rings; arbitrary rings are considered in [A]. R embeds into Q(resp. Q") as right
(left) multiplications, and any ¢ € Q¢ (resp. Q") has the property that there
exists I € F such that Iq C R (resp. ¢I € R). The symmetric quotient ring can
then be described as

Q ={q € Q'|¢I C R, some I € F}

(3.1)
= {q € Q"|Iqg C R, some I € F}.

As in [P], it is also seen to be

(32) Q=1i_II.1{(f,g)|fIRI—DR, g:IR—’Rand (a’f)b=a(gb)1

all a,b € I, for some I € F}.

Here ¢ is written on the left and f on the right. In this formulation R — @ via
a— (rq,€,), where r, (resp. £,) denotes right (left) multiplication by a.

When H acts on R, a smaller quotient ring may be constructed, which
will be very useful in studying crossed products. Thus we repeat the above
constructions, replacing F by Fp, the filter of H-stable ideals of R with zero
annihilator. Thus one obtains @Q%;, Q%, and finally Qx, the H-symmetric ring of
quotients of R. Note that Qu C @, and similarly Q% C Q* and Q}; C Q".

3.3 LEMMA: Let ¢ be a twisted action of H on R.
(1) Assume ¢ is invertible. If  is F-continuous (resp. Fy-continuous), then

¢ extends uniquely to a twisted action on Q" (resp. Q%) as follows: For
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I€F, g:Ir — R, and h € H, choose J € F such that 8y, J C I, for all
h¢iy in Agh. Then define h-g: J — R by

(h : g)a = Zh(l) : [g(oh(g)a)] € R,
h

for alla € J.

(2) Assume ¢ is anti-invertible. If 1 is F-continuous (resp. Fp-continuous),
then ¢ extends uniquely to a twisted action on Q¢ (resp. Q%) as follows:
ForI€F, f: pI - R, and h € H, choose J € F such that ¥y, J C I, for
all h¢;) in Agh. Then define h- f: J — R by

a(h- )= hay- [(¥ayya)f] € R,
h

for alla € J.

Proof: (1) The proof follows the outline of Cohen’s argument [C1, Theorem 18]
for the case when R is an H-module algebra, replacing Sh by 6;, and using the
JF-continuous hypothesis to replace I by J where necessary. Thus one sees that
h-g € Q" and this action extends the H-action on R. However, we give the
details to see that H measures " since the argument in [C1] contains a small
error and the domain of a is not given. Thus let g,¢' € Q7; we may find I € F
such that g,¢": I — R and thus g¢': I> - R. Now choose J € F such that
(hi-¢')J C R and 6, J C I, and then choose K € F such that 65, K C J?, for
all h(;) in Agh. Then for any a € K,

D (k1 g)(h2-g"Ya =) (h1-g)hs-[g'6h,q]
h

= Z hi - [g8n, (hs - (g’oha))]

=Y hi-[99'(6n,0)]

= (h-g9')(a)
(all terms make sense by our choice of J, K and the fact that ks - (¢'0s,a) =
(h3-g')8h,a, since hy-g' € Q7). Thus h-gg' =3, (h1-g)(h2-g¢') as the functions
agree on K.

Next we show that the twisted module condition holds in @". Let g € @
and I € F with gI C R. Then choose J € F such that 0., J C I for all hik; in
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Ashk. Thenforalla€e J, h k€ H,

Y olbr,ki)(hakz - g)a =y o(hs, k1)hsks - [g(Bhsks0)]
h

=3 (b1 (k1 - [9(Bnsks@))))o(ha, k2) Dy (1.3)
= ha- (k- [9(8nake@)0k; 00,0 (ha, a)]) by 1.1 (1)
h

= 1+ (ki - [g(Bnk,a)(o(ha, ka)a)]) by 1.13 (1)
h

=Y (k1 - (ks - 9))(o(ha, ka)a.
A
Since this holds for all a € J, it follows that

Ea(hl,kl)(hzkz g9)= Ea(hlkl + )(ha, k2)

h

and thus the TMC holds in Q".

Finally, we show that this extension of ¢ to @ is unique. Thus assume ¢’
is another extension of ¢ to Q, and write ¢hg = hx g, for g: Ir — R, I € F.
Choose J as before and let a € J. Then

(hxg)a=" (h1*g)lhz - (6hya)]
= Z hy * [g(8h,0)]
=" ks -[9(6h,0)]
= (h- g)a.

Sinceh*g=h-gon J,infact hxg=rh-g.

(2) To see that h- f € Q* and that this extends the H-action on R is similar to
the argument in [C], on the other side, using 1. [Ch, 3.3] shows that H measures
Q! when ¢ is fully H-stabilizing and his argument works here, with the minor
adjustment as above of choosing K so ¢y, K C IJ, all h(;) in Azh. We check the
twisted module condition: Let f € Q° with I € F such that If C R, and choose



Vol. 83, 1993 BIINVERTIBLE ACTIONS OF HOPF ALGEBRAS 59

J € F such that ¢y, J C I for all hijk; € Azhk. Thenfor allbe J, h,k € H,

bz(hlkl . f)U—l (h2) k2)
k

=Y haka - [(¥n,1,b) flo 7" (ha, ks)

= Za"l (h2,k2) ha - (k3 - [(%n,5,b) f]) by (1.3)

= ha-ka- [(Yrs¥nso " (b, k2)) (¥n,k,b) £] by 1.1(2)
= ha-ks- [(¥r,9n, (b (h1, k1) £)] by 1.13(2)

=3 b0 (hy, k1) (ha-ka- f).

Since this holds for all b € J, it follows that the TMC holds Q*.

The uniqueness of the extension of ¢ to @ is proved similarly to the argu-

ment for @7, only using .

Clearly one could replace F-continuity by Fy-continuity throughout. Thus
3.3 is proved. |

3.4 THEOREM: Let ¢ be a biinvertible twisted action of H on R.

(1) If0 and ¢ are Fy-continuous, then ¢ extends uniquely to a twisted action
of H on Qg.

(2) If 6 and ¢ are F-continuous, then ¢ extends uniquely to a twisted action
of H on Q.

(8) If ¢ is F-continuous, then the extension of ¢ to Q is also F-continuous.

Proof: We prove (2), as the argument for (1) is the same. We need to define
an action of H on Q. To do this, we use 3.3 and the characterization of @ in
3.2. Thus choose ¢ € @; ¢ is the equivalence class of (f,g), where for some
Ie F,f: rI = R, ¢g: I = R, and (af)b = a(gb), all a,b € I. Consider f and
g as representatives of elements in Q¢ and Q", and use 3.3. Thus we may define
h-g = class of (k- f,h-g). To see that h-q € @, choose J € F such that ¢, J C I,
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On;J C I for all k; in A3k, and choose a,b € J. Then

[a(h - F)lb = (ke - [(¥n. @)l Db
= "(ha - [(¥n,a)f])hs - (6had)
h

=" ha - [(($n,0)f)(6nsb)]

=3 hay - [(¥n,a)(9(6n,b)] since pn,a,0h,b€ I
= [h2- (¥1,0)] [hs - (9(6s.5))]

= alhy - (9(6s,5))]

= al(h - g)b].

By using I J € F as the ideal, this shows h- ¢ € @ by 3.2.
The fact that this action measures @, extends the action on R, and satisfies

the twisted module condition now follows from 3.3, as does uniqueness.

(3) Choose an ideal I € F(Q), and let I; = I N R. Then it is easy to see that
I € F. Forif rI; = 0, choose any ¢ € I. Then there exists J € F such that
¢J C R Thus ¢J C I1 and so r¢J = 0. Since J € F, it follows that r¢ = 0.
But then rI = 0, which implies r = 0. Similarly I;» = 0 implies r = 0, and thus
I e F.

Now, assume we are given I € F(Q) and h € H. Since ¢ is F-continuous,
there exists J € F such that kg -J C INR = I for all k) in Azh. Let
J' = QJQ; J' € F(Q) since J has no annihilator in Q. Now h-QJQ =
by - Q) (hay+ J) (hzy- Q) € QU NR)Q C I. Thus ¢ is F(Q)-continuous.
|

3.5 COROLLARY: Let ¢ be a twisted action of H on R.

(1) If Ho is cocommutative, then ¢ is fully biinvertible, and the H-action ex-
tends uniquely to a biinvertible twisted action on Qy. The extensions of §
and v are Fy(Qp)-continuous.

(2) K H is pointed, then ¢ is biinvertible, ¢,8 and 3 are F-continuous, and
the H-action extends uniquely to a biinvertible twisted action on Q. The

extensions of ¢, 0, and ¢ are all F(Q)-continuous.

Proof: 2.6 gives that  is fully biinvertible and the appropriate continuity prop-
erties on R. 3.4 gives the extension of ¢ to @ and Qy. But now apply 2.6 to Q
and Qg to see ¢, 0 and 3 are F(Q) or Fy(Qn)-continuous. |
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The Corollary raises the question as to whether it is true in general that
a biinvertible twisted action (with § and 1 continuous) extends to a biinvertible
action on Q or Qy. The next lemma shows that 6 and ¢ extend to one-sided

quotient rings.

3.6 LEMMA: Let ¢ be a twisted action of H on R.
(1) If ¢ is invertible, then 8 extends to Q%; if also ¢ is F-continuous, then 8
extends to Q*, as follows:
For f: rRI > R, 1€ F, he€ H, choose J € F such that hg;y - J C I, all
h(iy € Aszh. Then define 6 f: J — R by

a6nf) =) On[(h2-a)f] € R
h

foralla€ J.

(2) Ky is anti-invertible, then 1 extends to Q%;; if also ¢ is F-continuous, then
¥ extends to @7, as follows:
Forg: Ir — R,I € F,h € H, choose J € F such that h(;y-J C I, all h(;
in Agh. Then define ¥pg: J — R by

(¥rg)a =) ¥u,lg(h1 - a))
h

foralla€ J.

(3) If ¢ is biinvertible and extends to Q% and QY (respectively, extends to Q*
and Q" and is F-continuous), and 6 and y are Fy-continuous (respectively,
F-continuous) then 8 extends to an inverse of ¢ on Q% and Q° and
extends to an anti-inverse of ¢ on QY and Q".

Proof: (1) First note that 8, f € Q*. For, choose a € J,r € R; then
(ra)(Oaf) =Y On.[(h2-ra)f] =D On,[(h2 - r)(hs - a)f]
h h

= E On,(hs - )0, [(ha - a)f] as f anti-measures R
h
=rY_ Oh[(h2-a)f] =(a 6uf).
A

Thus 6 f is a left R-hom of J to R, so determines an element of Q¢ or Q%.
The proof of (2) is similar.
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(3) Now assume that ¢ is biinvertible. We first check that 6 is an inversc for
. Thus let f,I, and J be as above, and a € J. Then

a (Z ealm,f) =Y abi(hz- )= On[(h2-a)(hs - f)]
A h h
= On,(ha- [ns(hz-a)lf) by 3.3(2)
= Oh.(hs - (e(h2)af))
= 6h.(hs - (af)) = ae(h)f

and thus 0 x (k) = e(h)id. In the other direction,

a (Z ‘Pinohzf) =Y [hz-[(¥n,0)(0hsf)] by 3.3(2)
h

= X:[h2 - (¥n,a)][hs - (On, f)]
= Ze(hl)a e(he)f = a e(h)f.

Thus 6 is an inverse for ¢ on Q.

That ¥ is an anti-inverse of ¢ on Q7 follows similarly. Thus let g, I and
J be as above and b € J. Then

[z ¥hs (ha - g)] b= ¥, [(h1 - g) (k2 - B)]
h

= Z¢h‘hl . [9011, (ha : b)] by 33(1)
= Z’(j}hzhl . (gb) = e(h)gb

and

I:E h2 : (¢h1g)] b= Eh2 : [('phlg)(eha b)] by 33(1)
h
=" (hatn,9)(habh,g) = e(h)gb. W

It is interesting to note that the extension of § being an inverse for the
extension of ¢ requires the existence of 1, and similarly the extension of ¢ being
an anti-inverse of y requires §. However, we do not know in the above situation
whether or not 8 and 1 stabilize @ or Q@y. The question reduces to the action
of the coradical as the next lemma shows.



Vol. 83, 1993 BIINVERTIBLE ACTIONS OF HOPF ALGEBRAS 63

3.7 LEMMA: Assume y is a biinvertible twisted action of H on R and that ¢, 0,
and ¢ are F-continuous (resp.  and v are Fg-continuous).
(1) F6,Qu C Q (resp. 0,Qn € Qg) for all h € Hy, then 6,Q C Q (resp.
Qy C QH) forallh € H.
(2) If YuQ C Q (resp. ¥1Qu C Qu) for all b € Hy, then Q@ C Q (resp.
¥Y4Qn S Qn) for allh € H.

Proof: (1) We use the construction of 6 as in 2.4 and 2.5. Thus let f = ¢ and
define ¢’ by ¢’ =6 on Hy and ¢’ =0 on B, where H = Hy @ B as vector spaces.
Then certainly ¢,Q C Q, for all h € H. Also note h-Q C @Q for all h by Theorem
3.4.

Write Ah = Y, h; ® h}. Then for any ¢ € Q,

(F+em(@) = fu (shg) ST hi-QCQ.
Thusfor y =noe— fxg', v4Q C Q, all h. Since § = g’ Engo 7", it follows
that 6,Q C @Q, all h € H. Clearly we could replace @ by Qg.

(2) Use the fact, as in 2.5, that 4 is the inverse of ¢©°? in Hom(H°?,End R),
constructed as above. |

When the H-action extends to both quotient rings (as in the case of H
pointed; see 3.5) then something can be said about the invariants in Q and Q.

3.8 LEMMA: Let @ be a biinvertible twisted action of H on R, which extends to
Qu and to Q. Then Q¥ = (Qgy)*; that is, the invariant rings are the same.

Proof: Since Qg C Q,(Qu)¥ C Q¥ trivially. Thus, choose ¢ € QH. Since
g € @, there exists I € F such that ¢I,I¢ C R. By 1.12, H-I is an H-
stable ideal of R containing I. Thus H - I € Fg. Thus it will suffice to show
g(H - I),(H - I)q C R. Since g € Q(R)H,

h-(ga) = (h1-q)(ha-a) =) e(h1)q(hs-a) = q(h-a),
h

h
alhe H, a€R.

Thus g(h-I)=h-(¢I) Ch-R C R. Similarly (H-I)¢ C Randsoq € Qp. |
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4. Crossed product actions

In this section we specialize to a crossed product action ¢; recall o must satisfy
the cocycle condition (1.4). We first consider some sufficient conditions for ¢ to
be biinvertible, generalizing a result of [Ch]. We then consider crossed products
over the various quotient rings of R.

Thus, let R#,H be a crossed product, as in (1.5). Let v € Hom(H, R#,H)
denote the map h + 1#h. It is proved in [BM] that + is (convolution) invertible
whenever o is invertible, though we shall not need the actual formula for y~*. It
is also noted in [BM], [BCM] that for all h € H, a € R,

(4.1) wra=h-a=Y y(k)ay™ (k).
h

We will see that # and ¢ can take similar forms. The first part of the next
theorem is due to Chin [Ch, 1.3].

4.2 THEOREM: Let R#,H be a crossed product with action ¢ and let v be as
above.
(1) If vy has an anti-inverse 4, then ¢ has an anti-inverse given by

Yha =Y _q(ha)ay(hy).
h
(2) If4~! has an anti-inverse ¥, then ¢ has an inverse given by
Oha = _ v *(hz)a¥(h).
h

Moreover, Yy and 8y stabilize all H-stable ideals of R. Thus p is fully
biinvertible whenever v and 4y—1 are anti-invertible.

Before proving the theorem, we consider a basic example of 4 and 7.
4.3 Example: Assume that the cocycle o is trivial. Then 47! is always anti-
invertible, with 4(h) = 1#5%h. For, recall that in this case y~!(h) = 1#Sh.
Then
S He)ihe) = 3 1Sk Sty = S 1#S((Sho)h)
A
= 1#S(e(h) - 1) = e(h)1#1.

Similarly
z A(ha)yy™! (h) = e(R)141.
3
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If also S is bijective, then v is always anti-invertible with 4(h) = 1#S~1h; this
follows from the fact that ! is an anti-inverse for idy in Hom(H, H).
Returning to the theorem, note that it is straightforward to check that ¢
and 8 as defined in 4.2 are a formal inverse and anti-inverse for ¢; the difficulty
lies in showing that ¥sa and fpa are elements of R, for all a € R, h € H.
Chin proves this for ¥,a by using [DT, Prop 5]. For 63a we must first prove an

extension of Doi and Takeuchi’s result.

First we need some notation. As before, for C a coalgebra and A an algebra,
the convolution product in Hom(C, A) is denoted by *. The anti-convolution
product will be denoted by x; that is for f,g € Hom(C, A),

(f x 9)(e) =Y flca)g(cr).
<
In this notation, the above definitions mean that
yxF=Fxy=¢c-id and Y 'xy=Fxy =€ id.

Now consider a right H-comodule algebra A, with structure map p: A —
A® H. As in [DT), we also consider the two algebra maps i;: A - AQ® H given
by i1(a) = a® 1 and i;: H — A ® H given by i3(h) = 1 ® h. Observe that
i, has a convolution inverse i;'(h) = 1 ® Sk, and as in Example 4.3 i;! has
an anti-inverse 12(h) = 1 ® S>h. We apply these maps when A = R#,H, with
p(r#fh) = 32, r#h1 ® hy.

4.4 LEMMA: Consider A = R#t,H, with p,~,t) and is as above. Then
(1) [DT] poy~t =izt * (51 0972).
(2) if 4 exists, then po§ = (31 0 7) * 5.

Proof: (1) is [DT, Prop. 5]. For (2), since p is an algebra map and ¥ is the
anti-inverse of y~1, it follows that p o 4 is the anti-inverse of p o 1. Now (2)
will follow from (1), provided we show that (i; o 4) * 73 is the anti-inverse of

i3 ! * (i1 0 771). To see this, note that the image of i; in A ® H commutes with
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the images of i; ! and of ;. Then for any h € H,

[Gro7)*i2) x i7" % (077 )] (B) = D ir# (hs) B2 (ha) iz (1) iy ™" (h2)
h

=Y i17 (hs)iry ™! (k)72 (ha) iz (B1)
h

=3 ((hs) 77" (h2) ® 1) T2 (a) i7" (Ba)
=Y e (h) A#1®1) 3z (hs) iz (h1)
=e(h)(1#1®1).

By uniqueness of anti-inverses, (2) is proved. |

Proof of Theorem 4.2: As discussed above, we must show 8;r € R for all
r € R,h € H. Considering A = R#,H as an H-comodule algebra as above, we
know that R = R#1 = {a € A| p(a) = a®1}, the coinvariants of A [BCM, 5.10].
Thus it suffices to show p(fir) = O4r @ 1. Now

pBar) = p (Xh: 77 (he) 77 (hl))
=) poy (ha)p(r)poi(h)
= Xh: i7" * (i1 07™1)] (h2) p(r) [(G1 0 %) * 22] (h1)
= Zh:i;‘ (ha)iry ™" (ha)iz (r#1)ir¥ (h1) 32 (h2)
= éil (77" (ha) (r#1) 7 (h1)) i3 (hs) 72 (h2)
= it (17 (o) () )
= ilh (O4r) = bhr ® 1.

Thus 8,r € R and so § € Hom(H,End R).
Finally if I is an H-stable ideal of R, then 8,1 C RNAIA C RN(I#.H) =
I. Thus I is 8;-stable. |

The theorem raises the question as to when 4 and 4! are anti-invertible;
in fact this is not always the case, see [MSc]. We do have the following:
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4.5 LEMMA: v and y~! are anti-invertible provided their restrictions to Hy are
anti-invertible in Hom(Hy, End R). In particular this happens if Hq is cocommu-
tative.

Proof: We use Lemma 2.4 applied to Hom(H;°?,End R) as in 2.5 to prove the

1

first statement. Now if Hj is cocommutative, then ¥ = ™! and 4 = v on H,

proving the lemma. |

We note that Chin [Ch. 1.4] proved 4 was anti-invertible when Hy = & - 1
(that is, H is irreducible).

For the rest of this section, we consider a crossed product action ¢ which
is fully biinvertible; by 3.3 and 3.4, ¢ extends to a twisted action on Q%, QY%
and Qg. Since the cocycle condition extends trivially, in fact these extensions
of ¢ are all crossed product actions; thus one may form the crossed products
Qy#oH,Q4#.H and Qu#,H. We wish to study the relationship between
these crossed products and the ordinary right, left, and symmetric quotient rings
of R#,H. First we need a lemma: part (2) is in [Ch].

4.6 LEMMA: Let ¢ be an anti-invertible crossed product action of H on R. Then
(1) R#.H = H ® R as right R-modules,
(2) I#H = (1#H)(I#1) for any H-stable, 1y -stable ideal I of R,
(3) if I € Fu, then I#H € F(R#.H).

Proof: (1) The argument is the same as [KT, 1.6], replacing S~! by the anti-
inverse 1 of . That is, define a: H @ R = R#,H by a(h @ r) = (1#h) (r#1)
and a1 = B by B(r#h) = Tha®yn,r. It is easy to check that a0 and foa are
the identity, and clearly « is a right R-map, where R#,H is a right R-module
via right multiplication by r#1, any r € R.

(2) is [Ch. 1.5] and is similar to showing @ o § = id in (1). That is, for
acl,he H,

afth =) ha- (Yn,a)fths = ) (1#hs) (¥n,a#1) € (1#H) (I#1)
h h

and (I#H) (I#1) C I#H since I is H-stable.

(3) Choose w € R#,H such that (I#1)w = 0. If w = ) a;#h; then 0 =
(I#1)w = Y, Iai#h;. Since I € Fy, Ia; =0 implies a; = 0, all 7, and thus w =
0. If w(I#H) = 0, then w(I#1) = 0. By part (1), the isomorphism 8: R#,H —
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H @ R takes r#1 to 1®r. Thus 0 = w(I#1) = S(w(I#1)) = f(w)(1 @ I). But
B(w) = hi®r;, some h; € H, r; € R, and s0o 0 = }; h; ® riI. Then ;I = 0,
all ¢ implies r; = 0 and so w = 0 as before. Thus I#H € F(R#.H). |

4,7 THEOREM: Let ¢ be a fully biinvertible crossed product action of H on
R. Then each crossed product above embeds into the corresponding quotient of
R#toH; that is,

(1) Qu(R)H — Q" (Rit.H),

2) Qu(R)#.H — Q*(R#H),

(3) Qu(R)#.H — Q(R#.H).

Proof: We prove (3), since the others are similar. We first choose w € Qu(R)
and show that it can be extended to an element @ € Q(R#,H). Since w €
Qu(R), there exists I € Fy such that wl,Jw C R. Let K = I#H; then
K € F(R#.,H) by 4.6. Now define w: K — R#,H by w(a#th) = w(a)#h for all
a € I,h € H. We claim that 1 is a right R#H-map. For choose r € R, k € H.
Then

Ak

W ((a#h) (T#k)) = (Ea(hl . 7‘) O'(hz, kl) #hakz)

= Zw(a(hl -1)0 (h, k1)) #hak;

hk

=w(a) ) (h1-r)o (ha, k1) #hsk
h

= (w (a) #h) (r#k) = (b (a#h)) (r#k)
where we have used that w is a right R-map. Thus ¥ € Q(R#,H).
To see w € Q(R#,H), it suffices to show that Lw C R#.,H, for some
L € F(R#,H). First, we note that if a € I, then (a#1)% = aw#1. For if
b#h € K, then

(a#t1)w(b#h) = (a#1) (wbfth) = awb#th = (aw#1)(b#h).

Thus [(a#1 )b — (aw#1)]K = 0 in Q"(R#. H); it follows that (a#1)w = aw#1.
Let u = (1#h)(a#1l), for h € H, a € I. For any b#tk € I#H =K,

w (bE) = (19¢h) (a#t1) & (B#E) = (14h) (a#1) (wbfbk)
= (1#h) (awbftk) = (14h) (aftd) (5#E).
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Thus [uh — (1#h) (aw#1)] K = 0, and so uw = (1#th) (aw#1) € R#H. Thus
K1 C R#H and so v € Q (R#,H).

Finally we claim that the map m: Qu(R)#.,H — Q(R#,H) given by
7 (X3 witth:) = 3 ; wi(1#th;) is a monomorphism, where the {h;} are linearly
independent. For, choose I € F such that Jw; C R, all &. Then if ) w;#h; €
Kerr and a € I,

0= bi(1#h:) = ) (a#l) b; (1#h:) = Y awid#th; € R, H.
Thus aw; = 0, all ¢, all a. Since I € Fy, this gives w; = 0, all i, and so
Ker 7 = 0. It is straightforward to check that 7 is a homomorphism. |

Some sufficient conditions for Qu(R)#,H = Q(R#.H) are given in [BeM).

Now consider the centers of these quotient rings. C(R) = Z(Q(R)) is
called the extended center of R, and Cy(R) = Z(Qu(R)) is the H-extended
center. In fact Cy(R) = C(R) N Qu(R), since R C Qu(R) C Q(R). Moreover
C (respectively Cy) is also the center of Q¢ and Q" (resp. of Q% and Q%)
Although in general the center Cy of Qy is not H-stable, we use the notation
Cu(R)¥ to mean Cy(R) N Qu(R)¥; that is the central H-invariants of Qu(R).

4.8 COROLLARY: Under the embeddings described in 4.7,

Cu(R)?#1 — C(R#.H).

Proof: Choose A € Cy(R)H; by the proof of 4.7, e Q(R#.,H). We claim
e C(R#,H). Since in general C is the centralizer of R in @, it suffices to show
that A centralizes R#,H. Since A € Cy(R), it centralizes R = R#1. For 1#H,
choose h € H. Identifying X with A#1,

A#R)O#L) = Y by Mthy = Y e(ha)Mthg = Agth = (A#1)(h#1),
h

and thus } centralizes 1#H. ]

We close by comparing our quotient actions and crossed products with
Chin’s. He proceeds as follows: Beginning with a fully anti-invertible crossed
product action ¢, he extends ¢ to @%;, and then constructs a left quotient Q~
of R#,H using the filter F~ = {I#H | I € Fy}. Then Q4 #,H embeds in
@, so must be associative, and thus is a crossed product. Using this crossed
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product, he then shows that the H-action on Q¥ restricts to one on Qy by using
the map v: H — R#,H as in 4.1. Our methods are more direct, in that we first
extend twisted actions to Qg and @Y%, then construct Qu#.,H and Q4 #.H,
and finally embed these crossed products in Q(R#,H) and Q*(R#.,H). 1t is
not clear that Chin’s Q~ is the same as Q‘(R#,H) since the filter 7~ may be
smaller than F(R#.H).

In fact it is now known [MSc] that any crossed product action extends to the
quotient rings Q%, @%, and Qg provided S is bijective; in that case biinvertibility
is not necessary. Nevertheless it would still be of interest to know when y and y~!
are anti-invertible, since in that case many formulas have a simpler form.
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